We consider a parabolic semilinear non-autonomous problem $(\tilde P)$ for a fractional time dependent operator $\mathcal{B}^{s,t}_\Omega$ with Wentzell-type boundary conditions in a possibly non-smooth domain $\Omega\subset\mathbb{R}^N$. We prove existence and uniqueness of the mild solution of the associated semilinear abstract Cauchy problem $(P)$ via an evolution family $U(t,\tau)$. We then prove that the mild solution of the abstract problem $(P)$ actually solves problem $(\tilde P)$ via a generalized fractional Green formula.
Dynamic boundary conditions for time dependent fractional operators in extension domains / Creo, Simone; Lancia, Maria Rosaria. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - 29:9-10(2024), pp. 727-756. [10.57262/ade029-0910-727]
Dynamic boundary conditions for time dependent fractional operators in extension domains
Simone Creo;Maria Rosaria Lancia
2024
Abstract
We consider a parabolic semilinear non-autonomous problem $(\tilde P)$ for a fractional time dependent operator $\mathcal{B}^{s,t}_\Omega$ with Wentzell-type boundary conditions in a possibly non-smooth domain $\Omega\subset\mathbb{R}^N$. We prove existence and uniqueness of the mild solution of the associated semilinear abstract Cauchy problem $(P)$ via an evolution family $U(t,\tau)$. We then prove that the mild solution of the abstract problem $(P)$ actually solves problem $(\tilde P)$ via a generalized fractional Green formula.| File | Dimensione | Formato | |
|---|---|---|---|
|
Creo_dynamic_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
388.48 kB
Formato
Adobe PDF
|
388.48 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


