We consider a parabolic semilinear non-autonomous problem $(\tilde P)$ for a fractional time dependent operator $\mathcal{B}^{s,t}_\Omega$ with Wentzell-type boundary conditions in a possibly non-smooth domain $\Omega\subset\mathbb{R}^N$. We prove existence and uniqueness of the mild solution of the associated semilinear abstract Cauchy problem $(P)$ via an evolution family $U(t,\tau)$. We then prove that the mild solution of the abstract problem $(P)$ actually solves problem $(\tilde P)$ via a generalized fractional Green formula.

Dynamic boundary conditions for time dependent fractional operators in extension domains / Creo, Simone; Lancia, Maria Rosaria. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - 29:9-10(2024), pp. 727-756. [10.57262/ade029-0910-727]

Dynamic boundary conditions for time dependent fractional operators in extension domains

Simone Creo;Maria Rosaria Lancia
2024

Abstract

We consider a parabolic semilinear non-autonomous problem $(\tilde P)$ for a fractional time dependent operator $\mathcal{B}^{s,t}_\Omega$ with Wentzell-type boundary conditions in a possibly non-smooth domain $\Omega\subset\mathbb{R}^N$. We prove existence and uniqueness of the mild solution of the associated semilinear abstract Cauchy problem $(P)$ via an evolution family $U(t,\tau)$. We then prove that the mild solution of the abstract problem $(P)$ actually solves problem $(\tilde P)$ via a generalized fractional Green formula.
2024
Extension domains; fractional operators; non-autonomous energy forms; evolution operators; semilinear parabolic equations; ultracontractivity
01 Pubblicazione su rivista::01a Articolo in rivista
Dynamic boundary conditions for time dependent fractional operators in extension domains / Creo, Simone; Lancia, Maria Rosaria. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - 29:9-10(2024), pp. 727-756. [10.57262/ade029-0910-727]
File allegati a questo prodotto
File Dimensione Formato  
Creo_Dynamic_2024.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 453.96 kB
Formato Adobe PDF
453.96 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact