In this paper, we study the groups of isometries and the set of bi-Lipschitz automorphisms of spectral triples from a metric viewpoint, in the propinquity framework of Latrémolière. In particular, we prove that these groups and sets are compact in the automorphism group of the spectral triple (Formula presented.) -algebra with respect to the Monge–Kantorovich metric, which induces the topology of pointwise convergence. We then prove a necessary and sufficient condition for the convergence of the actions of various groups of isometries, in the sense of the covariant version of the Gromov–Hausdorff propinquity, a noncommutative analogue of the Gromov–Hausdorff distance, when working in the context of inductive limits of quantum compact metric spaces and metric spectral triples. We illustrate our work with examples including AF algebras and noncommutative solenoids.

Isometry groups of inductive limits of metric spectral triples and Gromov–Hausdorff convergence / Bassi, J.; Conti, R.; Farsi, C.; Latremoliere, F.. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 108:4(2023), pp. 1488-1530. [10.1112/jlms.12787]

Isometry groups of inductive limits of metric spectral triples and Gromov–Hausdorff convergence

Bassi J.;Conti R.;
2023

Abstract

In this paper, we study the groups of isometries and the set of bi-Lipschitz automorphisms of spectral triples from a metric viewpoint, in the propinquity framework of Latrémolière. In particular, we prove that these groups and sets are compact in the automorphism group of the spectral triple (Formula presented.) -algebra with respect to the Monge–Kantorovich metric, which induces the topology of pointwise convergence. We then prove a necessary and sufficient condition for the convergence of the actions of various groups of isometries, in the sense of the covariant version of the Gromov–Hausdorff propinquity, a noncommutative analogue of the Gromov–Hausdorff distance, when working in the context of inductive limits of quantum compact metric spaces and metric spectral triples. We illustrate our work with examples including AF algebras and noncommutative solenoids.
2023
C*-algebra, automorphism, spectral triple; inductive limit; isometry group; Gromov-Hausdorff convergence
01 Pubblicazione su rivista::01a Articolo in rivista
Isometry groups of inductive limits of metric spectral triples and Gromov–Hausdorff convergence / Bassi, J.; Conti, R.; Farsi, C.; Latremoliere, F.. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 108:4(2023), pp. 1488-1530. [10.1112/jlms.12787]
File allegati a questo prodotto
File Dimensione Formato  
Bassi_Isometry_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 420.22 kB
Formato Adobe PDF
420.22 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact