Several strategies have been recently proposed in order to improve Monte Carlo sampling efficiency using machine learning tools. Here, we challenge these methods by considering a class of problems that are known to be exponentially hard to sample using conventional local Monte Carlo at low enough temperatures. In particular, we study the antiferromagnetic Potts model on a random graph, which reduces to the coloring of random graphs at zero temperature. We test several machine-learning-assisted Monte Carlo approaches, and we find that they all fail. Our work thus provides good benchmarks for future proposals for smart sampling algorithms.

Machine-learning-assisted Monte Carlo fails at sampling computationally hard problems / Ciarella, Simone; Trinquier, Jeanne; Weigt, Martin; Zamponi, Francesco. - In: MACHINE LEARNING: SCIENCE AND TECHNOLOGY. - ISSN 2632-2153. - 4:1(2023), pp. 1-20. [10.1088/2632-2153/acbe91]

Machine-learning-assisted Monte Carlo fails at sampling computationally hard problems

Simone Ciarella
;
Jeanne Trinquier
;
Martin Weigt;Francesco Zamponi
2023

Abstract

Several strategies have been recently proposed in order to improve Monte Carlo sampling efficiency using machine learning tools. Here, we challenge these methods by considering a class of problems that are known to be exponentially hard to sample using conventional local Monte Carlo at low enough temperatures. In particular, we study the antiferromagnetic Potts model on a random graph, which reduces to the coloring of random graphs at zero temperature. We test several machine-learning-assisted Monte Carlo approaches, and we find that they all fail. Our work thus provides good benchmarks for future proposals for smart sampling algorithms.
2023
machine learning; sampling; algorithms
01 Pubblicazione su rivista::01a Articolo in rivista
Machine-learning-assisted Monte Carlo fails at sampling computationally hard problems / Ciarella, Simone; Trinquier, Jeanne; Weigt, Martin; Zamponi, Francesco. - In: MACHINE LEARNING: SCIENCE AND TECHNOLOGY. - ISSN 2632-2153. - 4:1(2023), pp. 1-20. [10.1088/2632-2153/acbe91]
File allegati a questo prodotto
File Dimensione Formato  
Ciarella_Machine-learning_2023.pdf

accesso aperto

Note: Articolo rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 19.59 MB
Formato Adobe PDF
19.59 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact