Climate change is reshaping global ecosystems at an unprecedented rate, with major impacts on biodiversity. Therefore, understanding how organisms can withstand change is key to identify priority conservation objectives. Marine ectotherms are being extremely impacted because their biology and phenology are directly related to temperature. Among these species, sea turtles are particularly problematic because they roam over both marine and terrestrial habitats throughout their life cycles. Focusing on green turtles (Chelonia mydas) in the Mediterranean Sea, we investigated the future potential changes of nesting grounds through time, assuming that marine turtles would shift their nesting locations. We modeled the current distribution of nesting grounds including both terrestrial and marine variables, and we projected the potential nesting distribution across the Mediterranean basin under alternative future greenhouse gas emission scenario (2000–2100). Our models show an increase in nesting probability in the western Mediterranean Sea, irrespective of the climate scenario we consider. Contrary to what is found in most global change studies, the worse the climate change scenario, the more suitable areas for green turtles will potentially increase. The most important predictors were anthropogenic variables, which negatively affect nesting probability, and sea surface temperature, positively linked to nesting probability, up to a maximum of 24–25 °C. The importance of the western Mediterranean beaches as potential nesting areas for sea turtles in the near future clearly call for a proactive conservation and management effort, focusing on monitoring actions (to document the potential range expansion) and threat detection.

Increase of nesting habitat suitability for green turtles in a warming Mediterranean Sea / Mancino, Chiara; Hochscheid, Sandra; Maiorano, Luigi. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 13:1(2023). [10.1038/s41598-023-46958-4]

Increase of nesting habitat suitability for green turtles in a warming Mediterranean Sea

Chiara Mancino
;
Luigi Maiorano
2023

Abstract

Climate change is reshaping global ecosystems at an unprecedented rate, with major impacts on biodiversity. Therefore, understanding how organisms can withstand change is key to identify priority conservation objectives. Marine ectotherms are being extremely impacted because their biology and phenology are directly related to temperature. Among these species, sea turtles are particularly problematic because they roam over both marine and terrestrial habitats throughout their life cycles. Focusing on green turtles (Chelonia mydas) in the Mediterranean Sea, we investigated the future potential changes of nesting grounds through time, assuming that marine turtles would shift their nesting locations. We modeled the current distribution of nesting grounds including both terrestrial and marine variables, and we projected the potential nesting distribution across the Mediterranean basin under alternative future greenhouse gas emission scenario (2000–2100). Our models show an increase in nesting probability in the western Mediterranean Sea, irrespective of the climate scenario we consider. Contrary to what is found in most global change studies, the worse the climate change scenario, the more suitable areas for green turtles will potentially increase. The most important predictors were anthropogenic variables, which negatively affect nesting probability, and sea surface temperature, positively linked to nesting probability, up to a maximum of 24–25 °C. The importance of the western Mediterranean beaches as potential nesting areas for sea turtles in the near future clearly call for a proactive conservation and management effort, focusing on monitoring actions (to document the potential range expansion) and threat detection.
2023
Chelonia mydas, Range shift, Climate change, Species distribution models
01 Pubblicazione su rivista::01a Articolo in rivista
Increase of nesting habitat suitability for green turtles in a warming Mediterranean Sea / Mancino, Chiara; Hochscheid, Sandra; Maiorano, Luigi. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 13:1(2023). [10.1038/s41598-023-46958-4]
File allegati a questo prodotto
File Dimensione Formato  
Mancino_Increase_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695464
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact