Background & aims: Primary sclerosing cholangitis (PSC) leads to ductular reaction and fibrosis and is complicated by vascular dysfunction. Cholangiocyte and endothelial cell crosstalk modulates their proliferation in cholestatic models. Endothelin (ET)-1 and ET-2 bind to their receptor, ET-A, and cholangiocytes are a key source of ET-1 after bile duct ligation. We aimed to evaluate the therapeutic potential of ET-A inhibition in PSC and biliary-endothelial crosstalk mediated by this pathway. Methods: Wild-type and multidrug resistance 2 knockout (Mdr2-/-) mice at 12 weeks of age were treated with vehicle or Ambrisentan (ET-A antagonist) for 1 week by daily intraperitoneal injections. Human control and PSC samples were used. Results: Mdr2-/- mice at 4, 8, and 12 weeks displayed angiogenesis that peaked at 12 weeks. Mdr2-/- mice at 12 weeks had enhanced biliary ET-1/ET-2/ET-A expression and secretion, whereas human PSC had enhanced ET-1/ET-A expression and secretion. Ambrisentan reduced biliary damage, immune cell infiltration, and fibrosis in Mdr2-/- mice. Mdr2-/- mice had squamous cholangiocytes with blunted microvilli and dilated arterioles lacking cilia; however, Ambrisentan reversed these alterations. Ambrisentan decreased cholangiocyte expression of pro-angiogenic factors, specifically midkine, through the regulation of cFOS. In vitro, ET-1/ET-A caused cholangiocyte senescence, endothelial cell angiogenesis, and macrophage inflammation. In vitro, human PSC cholangiocyte supernatants increased endothelial cell migration, which was blocked with Ambrisentan treatment. Conclusions: ET-A inhibition reduced biliary and liver damage in Mdr2-/- mice. ET-A promotes biliary angiocrine signaling that may, in turn, enhance angiogenesis. Targeting ET-A may prove therapeutic for PSC, specifically patients displaying vascular dysfunction.

Endothelin receptor-A inhibition decreases ductular reaction, liver fibrosis, and angiogenesis in a model of cholangitis / Owen, Travis; Carpino, Guido; Chen, Lixian; Kundu, Debjyoti; Wills, Payton; Ekser, Burcin; Onori, Paolo; Gaudio, Eugenio; Alpini, Gianfranco; Francis, Heather; Kennedy, Lindsey. - In: CMGH. - ISSN 2352-345X. - 16:4(2023), pp. 513-540. [10.1016/j.jcmgh.2023.06.005]

Endothelin receptor-A inhibition decreases ductular reaction, liver fibrosis, and angiogenesis in a model of cholangitis

Carpino, Guido;Onori, Paolo;Gaudio, Eugenio;
2023

Abstract

Background & aims: Primary sclerosing cholangitis (PSC) leads to ductular reaction and fibrosis and is complicated by vascular dysfunction. Cholangiocyte and endothelial cell crosstalk modulates their proliferation in cholestatic models. Endothelin (ET)-1 and ET-2 bind to their receptor, ET-A, and cholangiocytes are a key source of ET-1 after bile duct ligation. We aimed to evaluate the therapeutic potential of ET-A inhibition in PSC and biliary-endothelial crosstalk mediated by this pathway. Methods: Wild-type and multidrug resistance 2 knockout (Mdr2-/-) mice at 12 weeks of age were treated with vehicle or Ambrisentan (ET-A antagonist) for 1 week by daily intraperitoneal injections. Human control and PSC samples were used. Results: Mdr2-/- mice at 4, 8, and 12 weeks displayed angiogenesis that peaked at 12 weeks. Mdr2-/- mice at 12 weeks had enhanced biliary ET-1/ET-2/ET-A expression and secretion, whereas human PSC had enhanced ET-1/ET-A expression and secretion. Ambrisentan reduced biliary damage, immune cell infiltration, and fibrosis in Mdr2-/- mice. Mdr2-/- mice had squamous cholangiocytes with blunted microvilli and dilated arterioles lacking cilia; however, Ambrisentan reversed these alterations. Ambrisentan decreased cholangiocyte expression of pro-angiogenic factors, specifically midkine, through the regulation of cFOS. In vitro, ET-1/ET-A caused cholangiocyte senescence, endothelial cell angiogenesis, and macrophage inflammation. In vitro, human PSC cholangiocyte supernatants increased endothelial cell migration, which was blocked with Ambrisentan treatment. Conclusions: ET-A inhibition reduced biliary and liver damage in Mdr2-/- mice. ET-A promotes biliary angiocrine signaling that may, in turn, enhance angiogenesis. Targeting ET-A may prove therapeutic for PSC, specifically patients displaying vascular dysfunction.
2023
cholangiopathies; endothelial cells; liver fibrosis; midkine
01 Pubblicazione su rivista::01a Articolo in rivista
Endothelin receptor-A inhibition decreases ductular reaction, liver fibrosis, and angiogenesis in a model of cholangitis / Owen, Travis; Carpino, Guido; Chen, Lixian; Kundu, Debjyoti; Wills, Payton; Ekser, Burcin; Onori, Paolo; Gaudio, Eugenio; Alpini, Gianfranco; Francis, Heather; Kennedy, Lindsey. - In: CMGH. - ISSN 2352-345X. - 16:4(2023), pp. 513-540. [10.1016/j.jcmgh.2023.06.005]
File allegati a questo prodotto
File Dimensione Formato  
Owen_Endothelin_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695381
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact