In this paper we propose a new Mixed-Effects Quantile Regression Forest by generalizing the Quantile Regression Forest approach to longitudinal data. The inferential procedure is based on the Nonparametric Maximum Likelihood exploiting the Asymmetric Laplace distribution tool. The performance of the ME-QRF is tested in a simulation study and compared with the results of standard quantile regression models. Finally, the ME-QRF is applied to a data set for analysing the effect of the tratment on lead-exposed children.

New advances in Regression Forests / Andreani, Mila; Petrella, Lea; Salvati, Nicola. - (2023), pp. 1297-1302.

New advances in Regression Forests

Mila Andreani;Lea Petrella;
2023

Abstract

In this paper we propose a new Mixed-Effects Quantile Regression Forest by generalizing the Quantile Regression Forest approach to longitudinal data. The inferential procedure is based on the Nonparametric Maximum Likelihood exploiting the Asymmetric Laplace distribution tool. The performance of the ME-QRF is tested in a simulation study and compared with the results of standard quantile regression models. Finally, the ME-QRF is applied to a data set for analysing the effect of the tratment on lead-exposed children.
2023
Statistical Learning, Sustainability and Impact Evaluation
Quantile Regression; Random Forests; mixed-effects; longitudinal data
02 Pubblicazione su volume::02a Capitolo o Articolo
New advances in Regression Forests / Andreani, Mila; Petrella, Lea; Salvati, Nicola. - (2023), pp. 1297-1302.
File allegati a questo prodotto
File Dimensione Formato  
Andreani_New-advances_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact