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Abstract

In this paper we propose a new Mixed-Effects Quantile Regression Forest by generalizing
the Quantile Regression Forest approach to longitudinal data. The inferential procedure
is based on the Nonparametric Maximum Likelihood exploiting the Asymmetric Laplace
distribution tool. The performance of the ME-QRF is tested in a simulation study and
compared with the results of standard quantile regression models. Finally, the ME-QRF is
applied to a data set for analysing the effect of the tratment on lead-exposed children.

Keywords: Quantile Regression, Random Forests, mixed-effects, longitudinal data

1. Introduction

Mixed-effects quantile regression models are used in longitudinal studies to obtain a more complete
picture of the response variable distribution with respect to standard linear regression while accounting for
serial correlation among observations of the same statistical unit [5; 4; 2; 7]. This paper proposes a novel
machine learning algorithm, denoted Mixed- Effects Quantile Regression Forest (ME-QRF) to estimate
quantiles of longitudinal data generalizing the Quantile Regression Forest (QRF) algorithm of [9]. The
inferential approach is based on the Asymmetric Laplace distribution tool by applying the Non Parametric
Maximum Likelihood approach (NPML) of [6] already introduced in a quantile regression framework by
[1; 10] to the Quantile Regression Forest contest. In particular, we develop an EM algorithm to estimate
quantiles by decoupling the fixed-effects estimation part from the random-effects one without making
any parametric assumption. The ME-QRF performance is tested by means of a simulation study and
by comparing its performance with standard quantile regression models. The ME-QRF is also applied
empirically using a dataset from the study of [13] conducted to assess whether the succimer treatment of
children with Blood Lead Levels (BLL) < 45µg/dL is beneficial and safe.

2. Methodology

Let yit, i = 1, . . . , N , t = 1, . . . , Ti be the response variable for the i-th statistical unit observed at
time t, and xit ∈ Rp be the vector of explanatory variables where xit,1 ≡ 1.

By indicating with τ ∈ (0, 1) the quantile probability level, the standard quantile regression linear
mixed-model (LQMM) is:

yit = x′
itβτ + bi,τ + εit where Qτ (εij |xit,βτ , bi,τ ) = 0, ∀τ ∈ (0, 1) (1)
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where βτ is a vector of τ - dependent regression coefficients common to all statistical units, the term x′
itβτ

is the "fixed-effects" part of the model, whereas the term bi,τ is the "random-effects" part, represented by a
time-constant parameter that varies across statistical units according to a distribution fb(·) with support B.

Here we avoid making a parametric assumption concerning the fixed-effects part as in (1) and
formulate the quantile mixed model as follows:

yit = gτ (xit) + bi,τ + εit where Qτ (εit|xit, bi,τ ) = 0, ∀τ ∈ (0, 1) (2)

where gτ : Rp → R is a non-parametric unknown function. The terms gτ (xit) and bi,τ are estimated via
Maximum Likelihood by means of an EM algorithm based on QRF. We exploit the Asymmetric Laplace
(AL) distribution as suitable tool [14], where yit ∼ AL(µit, στ , τ):

f(yit|µit,τ , στ , τ) =
τ(1− τ)

στ
exp

{
− ρτ

(
yit − µit,τ

στ

)}
, (3)

where στ > 0 is the scale parameter, the function ρτ (u) = u(τ − 1{u<0}) is the quantile loss function of
[5] and the location parameter µit,τ = gτ (xit) + bi,τ represents the quantile at level τ .

The observed data likelihood is:

L(Φτ ) =
N∏
i=1

{∫
B

Ti∏
t=1

f(yit|µit,τ , στ , τ)fb(bi,τ ) dbi,τ

}
(4)

where Φτ = {σ, b1, . . . , bN}. The main issue concerning the likelihood in (4) is that it involves a
multidimensional integral that does not have a closed form solution and that it requires to specify the
functional form of fb(·). Thus, an EM algorithm is developed to estimate gτ (xit) with a QRF and to
estimate bi,τ by maximising (4) without making any parametric assumptions about the form of fb(·).

In line with previous contributions [8; 11; 1], we approximate fb(·) with a discrete distribution by
exploiting the NPML approach of [6]. In particular, we consider a discrete distribution on K < N locations
bk,τ such that bi,τ ∼

∑K
k=1 πk,τδbk,τ , where the probability πk,τ is defined as πk,τ = P(bi,τ = bk,τ ) with

i = 1, . . . , N and k = 1, . . . ,K where δbk,τ is a one-point distribution putting a unit mass at bk,τ . The
likelihood (4)is reformulated as:

L(Φτ ) =
N∏
i=1

{
K∑

k=1

Ti∏
t=1

f(yitk|µitk,τ , στ , τ)πk,τ

}
, (5)

where Φτ = {σ, b1, . . . , bK , π1, . . . , πK} is the parameter vector.
The next section described the EM algorithm based on (5) and QRF used to obtained Φ̂τ .

2..1 The EM algorithm
Given that each observation i in (5) can be considered as drawn from one of the K locations of the discrete
distribution used to approximate fb(·), we denote with wik the indicator variable equal to 1 if the i-th unit
belongs to the k-th component of the finite mixture, and 0 otherwise. The component membership wik is
considered as missing data and, from (5), the complete data log-likelihood is:

ℓc(Φτ ) =
N∑
i=1

K∑
k=1

wik,τ

{ Ti∑
t=1

log(f(yit|µitk,τ , στ )) + log(πk,τ )
}

(6)

Estimates ĝτ (xit) and b̂i,τ in (2) are obtained from (6) in a EM algorithm by decoupling the fixed-
effects estimation, obtained with a QRF, from the random-effects one as follows.

Initialization By indicating with r the generic iteration of the algorithm, in the first step r = 0,
b̂
(0)
i,τ , σ̂

(0)
τ , π̂

(0)
k,τ , ĝτ (xit)

(0) are initialised. In particular, the initial value ĝτ (xit)
(0) is computed as the τ -th

quantile estimated with a QRF fitted with the training set T (0) = {(yit,xit)}i=1,...,N
t=1,...,Ti

.
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E-step The E-step consists in updating ŵ
(r+1)
ik,τ and ĝτ (xit)

(r+1). In particular, ŵ(r+1)
ik,τ is updated as:

ŵ
(r+1)
ik,τ = E[wik,τ |yit,xit, Φ̂

(r)
τ ] =

∏Ti

t=1 f
(r)
itk,τ π̂

(r)
k,τ∑K

l=1

∏Ti

i=1 f
(r)
itl,τ π̂

(r)
l,τ

, (7)

where f
(r)
itk,τ is the response variable distribution when considering the k -th component of the finite

mixture.
The estimate ĝτ (xit)

(r+1) is updated by decoupling the random-effects from the fixed-effects. To this
end, ĝτ (xit)

(r+1) is estimated with the QRF fitted using the training set T (r+1) =
{(

y
∗(r+1)
it ,xit

)}
i=1,...,N
t=1,...,Ti

,

in which y
∗(r+1)
it = yit − b̂

(r)
i,τ .

M-step In the M-step, numerical optimisation techniques are applied to maximise E[ℓc(Φτ )|yit,xit, Φ̂
(r)
τ ]

with respect to σ̂τ and b̂k,τ .
The E- and M-steps are alternated iteratively until convergence.

3. Simulation study

This section reports the results of a simulation study carried out to assess the performance of the
ME-QRF in a non-linear setting. To this end, the ME-QRF is used to predict quantiles at levels τ ∈
{0.1, 0.5, 0.9} of an outcome variable simulated under the following non-linear data generating process
(DGP) [3]:

yit = g(xit) + bi + εit where g(xit) = 2xit,1 + x2it,1 + 4 · 1{xit,3>0} + 2xit,3 log |xit,1|

The covariates are generated as xit,1, xit,2, xit,3 ∼ N (0, 1). The random-effects parameters and the
error terms are generated independently according to two DGPs:

(NN) bi ∼ N(0, 1), εit ∼ N(0, 1) (TT) bi ∼ t(3), εit ∼ t(3)

As in [3], for each scenario we consider a training set of 500 observation for N = 100 statistical units
and Ti = 5 measurements each, and an unbalanced test set with Ti ∈ {9, 27, 45, 63, 81} for a total of
4500 observations. Each scenario has been replicated S = 100 times.

The average performance of the ME-QRF across the 100 replications is assessed in terms of Average
Mean Absolute Error (MAE) and average Mean Squared Error (MSE) with respect to the theoretical
quantile of the DGP, computed as in [12]:

MAEτ =
1

S

S∑
s=1

1

N

N∑
i=1

1

Ti

Ti∑
t=1

|Qs
it,τ − Q̂s

it,τ | MSEτ =
1

S

S∑
s=1

1

N

N∑
i=1

1

Ti

Ti∑
t=1

(Qs
it,τ − Q̂s

it,τ )
2

where Qs
it,τ = Qs

τ (yit|xit) and Q̂s
it,τ = Q̂s

τ (yit|xit) are respectively the theoretical and estimated
conditional quantiles of variable yit at level τ of the s-th simulated dataset.

The ME-QRF is compared with three benchmark models: LQMM, Quantile Random Forest (QRF)
and the Quantile Mixed Model (QMM) of [10]. The latter model exploits the same methodological
approach of the ME-QRF in a linear setting. Results are reported in Table 1.
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τ = 0.1 τ = 0.5 τ = 0.9

ME-QRF LQMM RF QMM ME-QRF LQMM RF QMM ME-QRF LQMM RF QMM

MAE 1.83 1.86 2.64 4.67 1.65 1.72 2.11 2.80 1.67 1.57 2.20 5.16
NN MSE 5.87 5.89 10.98 40.62 4.62 5.27 7.15 14.61 4.86 4.34 7.93 61.12

MAE 1.80 1.94 2.02 4.11 1.43 1.57 1.44 2.01 1.87 2.06 2.06 5.13
TT MSE 6.66 6.42 7.88 33.16 4.32 4.48 4.51 7.82 7.10 6.81 8.02 50.79

Table 1: Loss values for each scenario computed on the test set of the four fitted models. Values in bold
indicate the smallest loss.

The results highlight that the ME-QRF outperforms the benchmark models at almost all quantile
levels in each scenario, especially when the data violate the Gaussianity assumptions. The only exception
is represented by the quantile at τ = 0.9 for the NN scenario. In this case, the LQMM outperforms the
ME-QRF since the Gaussianity assumptions of the LQMM model hold. The ME-QRF and the LQMM
perform similarly in terms of MSE and represent the two models with the lowest MAE and MSE values.

4. Empirical Application

In this section, the ME-QRF is applied to a dataset from a placebo-controlled, double-blind, ran-
domised trial to study whether the succimer treatment of children with Blood Lead Levels (BLL) <
45µg/dL is beneficial and safe. Following [1], three quantile levels are considered τ ∈ {0.25, 0.5, 0.75}.

The dataset includes Ti = 4 weekly measurements of BLL for N = 100 children with BLL of 20–44
µg/dL. The covariates are the dummy variable Treatment (Ri) taking value 1 for children that have been
treated and 0 otherwise, and Time Wit ∈ {0, 1, 4, 6} representing week 0 -baseline-, week 1, week 4 and
week 6. Given the results of the simulation study, the ME-QRF has been compared in terms of quantile
loss with the LQMM with the following formulation:

BLLit = βi1Ri + βi2W
2
it + βi3(Ri ∗W 2

it) + βi4(Ri ∗Wit) + bi (8)

The quantile loss of [5] is computed as follows and the related results are presented in Table 2:

QLOSSτ =
1

N

N∑
i=1

1

Ti

Ti∑
t=1

uit(τ − 1{uit<0}) where uit = yit − Q̂it,τ . (9)

τ 0.25 0.5 0.75

QLOSSME-QRF 1.22 1.55 1.31
QLOSSLQMM 1.61 1.82 1.59

Table 2: Results in terms of QLOSS for the treatment of lead-exposed children dataset.

Results show that our model outperforms the LQMM at each quantile level. Figure 1 depicts the
treatment and control group quantile trajectories estimated with the ME-QRF for each mixture component
at level τ ∈ (0.25, 0.5, 0.75). Each trajectory is colour-coded according to the mixture component and the
treatment and control group of each component are identified with the solid and dashed lines, respectively.
The legend reports the number of statistical units in the control and treatment group of each mixture
component. The trajectories estimated with our model are coherent with the findings of [1].
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Figure 1: Estimated trajectories for ME-QRF for the first five mixture components. Each component
is indicated with one colour, and the treatment (solid curves) and control (dashed lines) groups are
represented separately. The legend reports the number of statistical units belonging to each mixture
component.

5. Conclusions

This paper introduces the Mixed-Effects Quantile Regression Forest (ME-QRF) model, which com-
bines QRF and mixed-models to estimate quantiles of longitudinal data wotjoud any parameteric as-
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sumption on the fixed-effects and the random-effects distribution. Simulation results highlight that the
ME-QRF outperforms benchmark models in non-linear settings, especially when Gaussianity assumptions
are violated. The ME-QRF is applied empirically using data from the study of [13] in order to assess
the effectiveness of the succimer treatment on lead-esposed children. Results show that the ME-QRF
outperforms the LQMM model in terms of quantile loss and that findings are coherent with the ones
presented in the previous literature.
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