Serotonin (5-HT) and thyroid hormones are part of a complex system modulating eating behaviour and energy expenditure. 5-Deiodinase (5-D) converts the relatively inactive thyroxine (T4) to triiodothyronine (T3), and its activity is an indirect measure of T3 production in peripheral tissues, particularly in the brain, intrascapular brown adipose tissue (IBAT), heart, liver, and kidney. We evaluated the effect of 5-HT on 5'-D activity during basal conditions and after short (30 min) cold exposure (thyroid stimulating hormone stimulation test, TST). 5'-D activity was assessed in the liver, heart, brain, kidney, and IBAT. TST increases 5'-D activity in the brain, heart, and IBAT and decreases it in kidney, leaving it unchanged in the liver. 5-HT alone did not modify 5'-D activity in the organs under study but decreased it in the IBAT, heart, and brain when injected before the TST was administered. Our results confirm the important role of 5-HT in thermoregulation, given its peripheral site of action, in modulating heat production controlling intracellular T3 production. These effects are more evident when heat production is upregulated during cold exposure in organs containing type II 5'-D, such as the brain, heart, and IBAT, which are able to modify their function during conditions that alter energy balance. In conclusion, 5-HT may also act peripherally directly on the thyroid and organs containing type II 5'-D, thus controlling energy expenditure through heat production.
Serotonin effect on deiodinating activity in the rat / Sullo, A; Brizzi, G; Maffulli, Nicola. - In: CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY. - ISSN 0008-4212. - (2003), pp. 747-751.
Serotonin effect on deiodinating activity in the rat
MAFFULLI, Nicola
2003
Abstract
Serotonin (5-HT) and thyroid hormones are part of a complex system modulating eating behaviour and energy expenditure. 5-Deiodinase (5-D) converts the relatively inactive thyroxine (T4) to triiodothyronine (T3), and its activity is an indirect measure of T3 production in peripheral tissues, particularly in the brain, intrascapular brown adipose tissue (IBAT), heart, liver, and kidney. We evaluated the effect of 5-HT on 5'-D activity during basal conditions and after short (30 min) cold exposure (thyroid stimulating hormone stimulation test, TST). 5'-D activity was assessed in the liver, heart, brain, kidney, and IBAT. TST increases 5'-D activity in the brain, heart, and IBAT and decreases it in kidney, leaving it unchanged in the liver. 5-HT alone did not modify 5'-D activity in the organs under study but decreased it in the IBAT, heart, and brain when injected before the TST was administered. Our results confirm the important role of 5-HT in thermoregulation, given its peripheral site of action, in modulating heat production controlling intracellular T3 production. These effects are more evident when heat production is upregulated during cold exposure in organs containing type II 5'-D, such as the brain, heart, and IBAT, which are able to modify their function during conditions that alter energy balance. In conclusion, 5-HT may also act peripherally directly on the thyroid and organs containing type II 5'-D, thus controlling energy expenditure through heat production.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.