Driver fatigue has been under more attention as it is a main cause of traffic accidents. This paper proposed a method which utilized the inter/intra-region phase synchronization and functional units (FUs) to explore whether EEG synchronization changes from the alert state to the fatigue state. Mean phase coherence (MPC) is adopted as a measure for the phase synchronization. In order to find spatial-frequency features associated with mental state, we studied the intra/inter-region phase synchronization of EEG in different frequencies. The major finding is that EEG synchronizations in delta and alpha bands in frontal and parietal lobe are significantly increased as the mental state of the driver shifted from alertness to fatigue. This finding is simultaneously validated by NASA-Task Load Index (TLX) and Karolinska sleepiness scale (KSS). The statistical analysis results suggest MPC may be used to distinguish between alert and fatigue state of mind. In addition, the another contribution of the work indicates a simple and significant spatial-frequency pair of electrodes, i.e., Fz-Oz in delta band, to evaluate driver fatigue. It helps to implement real-world applications with wearable EEG equipment.

Assessment of driving fatigue based on intra/inter-region phase synchronization / Kong, W.; Zhou, Z.; Jiang, B.; Babiloni, F.; Borghini, G.. - In: NEUROCOMPUTING. - ISSN 0925-2312. - 219:(2017), pp. 474-482. [10.1016/j.neucom.2016.09.057]

Assessment of driving fatigue based on intra/inter-region phase synchronization

Kong, W.
;
Babiloni, F.;Borghini, G.
2017

Abstract

Driver fatigue has been under more attention as it is a main cause of traffic accidents. This paper proposed a method which utilized the inter/intra-region phase synchronization and functional units (FUs) to explore whether EEG synchronization changes from the alert state to the fatigue state. Mean phase coherence (MPC) is adopted as a measure for the phase synchronization. In order to find spatial-frequency features associated with mental state, we studied the intra/inter-region phase synchronization of EEG in different frequencies. The major finding is that EEG synchronizations in delta and alpha bands in frontal and parietal lobe are significantly increased as the mental state of the driver shifted from alertness to fatigue. This finding is simultaneously validated by NASA-Task Load Index (TLX) and Karolinska sleepiness scale (KSS). The statistical analysis results suggest MPC may be used to distinguish between alert and fatigue state of mind. In addition, the another contribution of the work indicates a simple and significant spatial-frequency pair of electrodes, i.e., Fz-Oz in delta band, to evaluate driver fatigue. It helps to implement real-world applications with wearable EEG equipment.
2017
Driver fatigue; EEG; Mean phase coherence; Phase synchronization; Functional unit
01 Pubblicazione su rivista::01a Articolo in rivista
Assessment of driving fatigue based on intra/inter-region phase synchronization / Kong, W.; Zhou, Z.; Jiang, B.; Babiloni, F.; Borghini, G.. - In: NEUROCOMPUTING. - ISSN 0925-2312. - 219:(2017), pp. 474-482. [10.1016/j.neucom.2016.09.057]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1694356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact