The task of reconstructing particles from low-level detector response data to predict the set of final state particles in collision events represents a set-to-set prediction task requiring the use of multiple features and their correlations in the input data. We deploy three separate set-to-set neural network architectures to reconstruct particles in events containing a single jet in a fully-simulated calorimeter. Performance is evaluated in terms of particle reconstruction quality, properties regression, and jet-level metrics. The results demonstrate that such a high-dimensional end-to-end approach succeeds in surpassing basic parametric approaches in disentangling individual neutral particles inside of jets and optimizing the use of complementary detector information. In particular, the performance comparison favors a novel architecture based on learning hypergraph structure, HGPflow, which benefits from a physically-interpretable approach to particle reconstruction.

Reconstructing particles in jets using set transformer and hypergraph prediction networks / Di Bello, F. A.; Dreyer, E.; Ganguly, S.; Gross, E.; Heinrich, L.; Ivina, A.; Kado, M.; Kakati, N.; Santi, L.; Shlomi, J.; Tusoni, M.. - In: EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6052. - 83:7(2023), pp. 1-18. [10.1140/epjc/s10052-023-11677-7]

Reconstructing particles in jets using set transformer and hypergraph prediction networks

Di Bello, F. A.
;
Kado, M.;Santi, L.;Tusoni, M.
2023

Abstract

The task of reconstructing particles from low-level detector response data to predict the set of final state particles in collision events represents a set-to-set prediction task requiring the use of multiple features and their correlations in the input data. We deploy three separate set-to-set neural network architectures to reconstruct particles in events containing a single jet in a fully-simulated calorimeter. Performance is evaluated in terms of particle reconstruction quality, properties regression, and jet-level metrics. The results demonstrate that such a high-dimensional end-to-end approach succeeds in surpassing basic parametric approaches in disentangling individual neutral particles inside of jets and optimizing the use of complementary detector information. In particular, the performance comparison favors a novel architecture based on learning hypergraph structure, HGPflow, which benefits from a physically-interpretable approach to particle reconstruction.
2023
machine learning; HEP; LHC; HGPflow; ATLAS; physics particles
01 Pubblicazione su rivista::01a Articolo in rivista
Reconstructing particles in jets using set transformer and hypergraph prediction networks / Di Bello, F. A.; Dreyer, E.; Ganguly, S.; Gross, E.; Heinrich, L.; Ivina, A.; Kado, M.; Kakati, N.; Santi, L.; Shlomi, J.; Tusoni, M.. - In: EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6052. - 83:7(2023), pp. 1-18. [10.1140/epjc/s10052-023-11677-7]
File allegati a questo prodotto
File Dimensione Formato  
DiBello_Reconstructing particles_2023.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1694166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact