We study best-effort strategies (aka plans) in fully observable nondeterministic domains (FOND) for goals expressed in Linear Temporal Logic on Finite Traces (LTLf). The notion of best-effort strategy has been introduced to also deal with the scenario when no agent strategy exists that fulfills the goal against every possible nondeterministic environment reaction. Such strategies fulfill the goal if possible, and do their best to do so otherwise. We present a game-theoretic technique for synthesizing best-effort strategies that exploit the specificity of nondeterministic planning domains. We formally show its correctness and demonstrate its effectiveness experimentally, exhibiting a much greater scalability with respect to a direct best-effort synthesis approach based on re-expressing the planning domain as generic environment specifications.

LTLf Best-Effort Synthesis in Nondeterministic Planning Domains / DE GIACOMO, Giuseppe; Parretti, Gianmarco; Zhu, Shufang. - 372:(2023), pp. 533-540. (Intervento presentato al convegno European Conference on Artificial Intelligence tenutosi a Krakow; Poland) [10.3233/FAIA230313].

LTLf Best-Effort Synthesis in Nondeterministic Planning Domains

Giuseppe De Giacomo;Gianmarco Parretti
;
Shufang Zhu
2023

Abstract

We study best-effort strategies (aka plans) in fully observable nondeterministic domains (FOND) for goals expressed in Linear Temporal Logic on Finite Traces (LTLf). The notion of best-effort strategy has been introduced to also deal with the scenario when no agent strategy exists that fulfills the goal against every possible nondeterministic environment reaction. Such strategies fulfill the goal if possible, and do their best to do so otherwise. We present a game-theoretic technique for synthesizing best-effort strategies that exploit the specificity of nondeterministic planning domains. We formally show its correctness and demonstrate its effectiveness experimentally, exhibiting a much greater scalability with respect to a direct best-effort synthesis approach based on re-expressing the planning domain as generic environment specifications.
2023
European Conference on Artificial Intelligence
Linear Temporal Logic on Finite Traces; Planning in Nondetermninistic Domains; Best-Effort Strategies
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
LTLf Best-Effort Synthesis in Nondeterministic Planning Domains / DE GIACOMO, Giuseppe; Parretti, Gianmarco; Zhu, Shufang. - 372:(2023), pp. 533-540. (Intervento presentato al convegno European Conference on Artificial Intelligence tenutosi a Krakow; Poland) [10.3233/FAIA230313].
File allegati a questo prodotto
File Dimensione Formato  
DeGiacomo_postprint_LTLf-Best-Effort_2023.pdf

accesso aperto

Note: DOI 10.3233/FAIA230313
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 444.31 kB
Formato Adobe PDF
444.31 kB Adobe PDF
DeGiacomo_LTLf-Best-Effort_2023.pdf

accesso aperto

Note: DOI 10.3233/FAIA230313
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 413.76 kB
Formato Adobe PDF
413.76 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1693772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact