This study numerically investigates the two-dimensional natural convection in a square enclosure with an isothermal diamond elliptic array at Rayleigh numbers of 104 ≤ Ra ≤ 107. Three cases are considered, i.e., case 1 where two pairs of circular heating bodies are used inside the cavity, one is placed on the vertical centerline (VC) of the cavity and the other on the horizontal centerline (HC), case 2 where one pair of horizontal elliptic heating bodies is placed on the VC of the cavity and the other on the HC and case 3 where the horizontal elliptic heating bodies are replaced by vertical elliptic heating bodies. Numerical simulation was carried out based on the mesoscopic approach (LBM). The effects of the horizontally and vertically heated arrays were investigated. We demonstrate that, only when the Rayleigh number increases to Ra = 107, the numerical solutions reach an unsteady state for all cases. The transition of the flow regime from the unsteady state to the steady state depends on the variation in the ratio of the elliptical cylinder.
Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array / Chaabane, R.; Kolsi, L.; Jemni, A.; D'Orazio, A.. - In: INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION. - ISSN 1565-1339. - 24:6(2023), pp. 2163-2177. [10.1515/ijnsns-2021-0073]
Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array
D'Orazio A.
2023
Abstract
This study numerically investigates the two-dimensional natural convection in a square enclosure with an isothermal diamond elliptic array at Rayleigh numbers of 104 ≤ Ra ≤ 107. Three cases are considered, i.e., case 1 where two pairs of circular heating bodies are used inside the cavity, one is placed on the vertical centerline (VC) of the cavity and the other on the horizontal centerline (HC), case 2 where one pair of horizontal elliptic heating bodies is placed on the VC of the cavity and the other on the HC and case 3 where the horizontal elliptic heating bodies are replaced by vertical elliptic heating bodies. Numerical simulation was carried out based on the mesoscopic approach (LBM). The effects of the horizontally and vertically heated arrays were investigated. We demonstrate that, only when the Rayleigh number increases to Ra = 107, the numerical solutions reach an unsteady state for all cases. The transition of the flow regime from the unsteady state to the steady state depends on the variation in the ratio of the elliptical cylinder.File | Dimensione | Formato | |
---|---|---|---|
Chaabane_Buoyancy_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
7.51 MB
Formato
Adobe PDF
|
7.51 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.