Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this classic problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an O (k2) amortized update time (in the number of additions and deletions) and yields a 4-approximate solution, where k is the rank of the matroid.

Fully Dynamic Submodular Maximization over Matroids / Dütting, P.; Fusco, F.; Lattanzi, S.; Norouzi-Fard, A.; Zadimoghaddam, M.. - 202:(2023), pp. 8821-8835. (Intervento presentato al convegno International Conference on Machine Learning tenutosi a Honolulu; USA).

Fully Dynamic Submodular Maximization over Matroids

Fusco F.
;
Lattanzi S.;
2023

Abstract

Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this classic problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an O (k2) amortized update time (in the number of additions and deletions) and yields a 4-approximate solution, where k is the rank of the matroid.
2023
International Conference on Machine Learning
submodular maximization; fully dynamic
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Fully Dynamic Submodular Maximization over Matroids / Dütting, P.; Fusco, F.; Lattanzi, S.; Norouzi-Fard, A.; Zadimoghaddam, M.. - 202:(2023), pp. 8821-8835. (Intervento presentato al convegno International Conference on Machine Learning tenutosi a Honolulu; USA).
File allegati a questo prodotto
File Dimensione Formato  
Dutting_Fully_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 312.82 kB
Formato Adobe PDF
312.82 kB Adobe PDF   Contatta l'autore
Dutting_preprint_Fully_2023.pdf

accesso aperto

Note: https://proceedings.mlr.press/v202/duetting23a/duetting23a.pdf
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 263.09 kB
Formato Adobe PDF
263.09 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1693542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact