This paper addresses the problem of translating night-time thermal infrared images, which are the most adopted image modalities to analyze night-time scenes, to daytime color images (NTIT2DC), which provide better perceptions of objects. We introduce a novel model that focuses on enhancing the quality of the target generation without merely colorizing it. The proposed structural aware (StawGAN) enables the translation of better-shaped and high-definition objects in the target domain. We test our model on aerial images of the DroneVeichle dataset containing RGB-IR paired images. The proposed approach produces a more accurate translation with respect to other state-of-the-art image translation models. The source code will be available after the revision process.

StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation / Sigillo, L.; Grassucci, E.; Comminiello, D.. - 2023-:(2023), pp. 1-5. (Intervento presentato al convegno 56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 tenutosi a Monterey, USA) [10.1109/ISCAS46773.2023.10181838].

StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation

Sigillo L.
Primo
;
Grassucci E.;Comminiello D.
2023

Abstract

This paper addresses the problem of translating night-time thermal infrared images, which are the most adopted image modalities to analyze night-time scenes, to daytime color images (NTIT2DC), which provide better perceptions of objects. We introduce a novel model that focuses on enhancing the quality of the target generation without merely colorizing it. The proposed structural aware (StawGAN) enables the translation of better-shaped and high-definition objects in the target domain. We test our model on aerial images of the DroneVeichle dataset containing RGB-IR paired images. The proposed approach produces a more accurate translation with respect to other state-of-the-art image translation models. The source code will be available after the revision process.
2023
56th IEEE International Symposium on Circuits and Systems, ISCAS 2023
drone Images; generative adversarial networks; image modality translation; infrared images
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation / Sigillo, L.; Grassucci, E.; Comminiello, D.. - 2023-:(2023), pp. 1-5. (Intervento presentato al convegno 56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 tenutosi a Monterey, USA) [10.1109/ISCAS46773.2023.10181838].
File allegati a questo prodotto
File Dimensione Formato  
Sigillo_StawGAN_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.62 MB
Formato Adobe PDF
5.62 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1693480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact