The emission of γ-rays after neutron capture in a cryogenic detector can generate monoenergetic nuclear recoils in the sub-keV regime, which is of direct interest for the calibration of dark matter and coherent elastic neutrino-nucleus scattering experiments. Here we show that accurate predictions of the spectra of total energy deposition induced by neutron captures require taking into account the interplay between the development in time of the deexcitation γ-ray cascade of the target nucleus and that of the associated atomic collisions in matter. We present detailed simulations coupling the fifrelin code for the description of the γ-ray cascades and the iradina code for the modeling of the fast atomic movements in matter. Spectra of total energy deposition are predicted, and made available to the community, for concrete cases of Al2O3, Si, Ge, and CaWO4 crystals exposed to a low intensity beam of thermal neutrons. We find that timing effects cause new calibration peaks to emerge in the recoil spectra and also impact the shape of the continuous recoil distribution. We discuss how they could give access to a rich physics program, spanning the accurate study of the response of cryogenic detectors in the sub-keV range, tests of solid state physics simulations, and nuclear models.

Study of collision and γ-cascade times following neutron-capture processes in cryogenic detectors / Soum-Sidikov, G.; Abele, H.; Burkhart, J.; Cappella, F.; Casali, N.; Cerulli, R.; Chalil, A.; Chebboubi, A.; Crocombette, J-P.; del Castello, G.; del Gallo Roccagiovine, M.; Doblhammer, A.; Dorer, S.; Erhart, A.; Giuliani, A.; Goupy, C.; Gunsing, F.; Jericha, E.; Kaznacheeva, M.; Kinast, A.; Kluck, H.; Langenkämper, A.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Litaize, O.; de Marcillac, P.; Marnieros, S.; Martin, R.; Materna, T.; Mazzucato, E.; Nones, C.; Ortmann, T.; Pattavina, L.; Poda, D.  V.; Peters, L.; Rothe, J.; Schermer, N.; Schieck, J.; Schönert, S.; Serot, O.; Stodolsky, L.; Strauss, R.; Thulliez, L.; Vignati, M.; Vivier, M.; Wagner, V.; Wex, A.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 108:7(2023). [10.1103/PhysRevD.108.072009]

Study of collision and γ-cascade times following neutron-capture processes in cryogenic detectors

Cappella, F.;Casali, N.;del Castello, G.;del Gallo Roccagiovine, M.;Vignati, M.;
2023

Abstract

The emission of γ-rays after neutron capture in a cryogenic detector can generate monoenergetic nuclear recoils in the sub-keV regime, which is of direct interest for the calibration of dark matter and coherent elastic neutrino-nucleus scattering experiments. Here we show that accurate predictions of the spectra of total energy deposition induced by neutron captures require taking into account the interplay between the development in time of the deexcitation γ-ray cascade of the target nucleus and that of the associated atomic collisions in matter. We present detailed simulations coupling the fifrelin code for the description of the γ-ray cascades and the iradina code for the modeling of the fast atomic movements in matter. Spectra of total energy deposition are predicted, and made available to the community, for concrete cases of Al2O3, Si, Ge, and CaWO4 crystals exposed to a low intensity beam of thermal neutrons. We find that timing effects cause new calibration peaks to emerge in the recoil spectra and also impact the shape of the continuous recoil distribution. We discuss how they could give access to a rich physics program, spanning the accurate study of the response of cryogenic detectors in the sub-keV range, tests of solid state physics simulations, and nuclear models.
2023
gamma-ray strength function; cryogenics; radiative capture
01 Pubblicazione su rivista::01a Articolo in rivista
Study of collision and γ-cascade times following neutron-capture processes in cryogenic detectors / Soum-Sidikov, G.; Abele, H.; Burkhart, J.; Cappella, F.; Casali, N.; Cerulli, R.; Chalil, A.; Chebboubi, A.; Crocombette, J-P.; del Castello, G.; del Gallo Roccagiovine, M.; Doblhammer, A.; Dorer, S.; Erhart, A.; Giuliani, A.; Goupy, C.; Gunsing, F.; Jericha, E.; Kaznacheeva, M.; Kinast, A.; Kluck, H.; Langenkämper, A.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Litaize, O.; de Marcillac, P.; Marnieros, S.; Martin, R.; Materna, T.; Mazzucato, E.; Nones, C.; Ortmann, T.; Pattavina, L.; Poda, D.  V.; Peters, L.; Rothe, J.; Schermer, N.; Schieck, J.; Schönert, S.; Serot, O.; Stodolsky, L.; Strauss, R.; Thulliez, L.; Vignati, M.; Vivier, M.; Wagner, V.; Wex, A.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 108:7(2023). [10.1103/PhysRevD.108.072009]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1693392
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact