A central role in shaping the experience of users online is played by recommendation algorithms. On the one hand they help retrieving content that best suits users taste, but on the other hand they may give rise to the so-called “filter bubble” effect, favoring the rise of polarization. In the present paper we study how a user-user collaborative-filtering algorithm affects the behavior of a group of agents repeatedly exposed to it. By means of analytical and numerical techniques we show how the system stationary state depends on the strength of the similarity and popularity biases, quantifying respectively the weight given to the most similar users and to the best rated items. In particular, we derive a phase diagram of the model, where we observe three distinct phases: disorder, consensus, and polarization. In the last users spontaneously split into different groups, each focused on a single item. We identify, at the boundary between the disorder and polarization phases, a region where recommendations are nontrivially personalized without leading to filter bubbles. Finally, we show that our model well reproduces the behavior of users on the online music platform last.fm. This analysis paves the way to a systematic analysis of recommendation algorithms by means of statistical physics methods and opens the possibility of devising less polarizing recommendation algorithms.

Effect of collaborative-filtering-based recommendation algorithms on opinion polarization / Bellina, Alessandro; Castellano, Claudio; Pineau, Paul; Iannelli, Giulio; DE MARZO, Giordano. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - (2023).

Effect of collaborative-filtering-based recommendation algorithms on opinion polarization

Alessandro Bellina
Primo
;
Claudio Castellano
Secondo
;
Giulio Iannelli;Giordano De Marzo
Ultimo
2023

Abstract

A central role in shaping the experience of users online is played by recommendation algorithms. On the one hand they help retrieving content that best suits users taste, but on the other hand they may give rise to the so-called “filter bubble” effect, favoring the rise of polarization. In the present paper we study how a user-user collaborative-filtering algorithm affects the behavior of a group of agents repeatedly exposed to it. By means of analytical and numerical techniques we show how the system stationary state depends on the strength of the similarity and popularity biases, quantifying respectively the weight given to the most similar users and to the best rated items. In particular, we derive a phase diagram of the model, where we observe three distinct phases: disorder, consensus, and polarization. In the last users spontaneously split into different groups, each focused on a single item. We identify, at the boundary between the disorder and polarization phases, a region where recommendations are nontrivially personalized without leading to filter bubbles. Finally, we show that our model well reproduces the behavior of users on the online music platform last.fm. This analysis paves the way to a systematic analysis of recommendation algorithms by means of statistical physics methods and opens the possibility of devising less polarizing recommendation algorithms.
2023
Social Network, Opinions, Polarization, Echo Chambers
01 Pubblicazione su rivista::01a Articolo in rivista
Effect of collaborative-filtering-based recommendation algorithms on opinion polarization / Bellina, Alessandro; Castellano, Claudio; Pineau, Paul; Iannelli, Giulio; DE MARZO, Giordano. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - (2023).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1692557
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact