The defuzzification of a type-2 fuzzy set is a two-stage process consisting of firstly type-reduction, and a secondly defuzzification of the resultant type-1 set. All accurate type reduction methods used to build fuzzy classifiers are based on the recursive Karnik-Mendel algorithm, which is troublesome to obtain a feedforward type-2 fuzzy network structure. Moreover, the KM algorithm and its modifications complicate the learning process due to the non-differentiability of the maximum and minimum functions. Therefore, this paper proposes to use the smooth maximum function to develop a new structure of the fuzzy type-2 classifier.

Type-2 Fuzzy Classifier with Smooth Type-Reduction / Nieszporek, K; De Magistris, G; Napoli, C; Starczewski, Jt. - 13588:(2023), pp. 193-202. (Intervento presentato al convegno Artificial Intelligence and Soft Computing tenutosi a Zakopane; Poland) [10.1007/978-3-031-23492-7_17].

Type-2 Fuzzy Classifier with Smooth Type-Reduction

De Magistris, G
Secondo
Formal Analysis
;
Napoli, C
Penultimo
Supervision
;
2023

Abstract

The defuzzification of a type-2 fuzzy set is a two-stage process consisting of firstly type-reduction, and a secondly defuzzification of the resultant type-1 set. All accurate type reduction methods used to build fuzzy classifiers are based on the recursive Karnik-Mendel algorithm, which is troublesome to obtain a feedforward type-2 fuzzy network structure. Moreover, the KM algorithm and its modifications complicate the learning process due to the non-differentiability of the maximum and minimum functions. Therefore, this paper proposes to use the smooth maximum function to develop a new structure of the fuzzy type-2 classifier.
2023
Artificial Intelligence and Soft Computing
smooth type reduction; interval type-2 fuzzy logic systems
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Type-2 Fuzzy Classifier with Smooth Type-Reduction / Nieszporek, K; De Magistris, G; Napoli, C; Starczewski, Jt. - 13588:(2023), pp. 193-202. (Intervento presentato al convegno Artificial Intelligence and Soft Computing tenutosi a Zakopane; Poland) [10.1007/978-3-031-23492-7_17].
File allegati a questo prodotto
File Dimensione Formato  
Nieszporek_Preprint_Type-2_2022.pdf

accesso aperto

Note: DOI10.1007/978-3-031-23492-7_17
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 441.28 kB
Formato Adobe PDF
441.28 kB Adobe PDF
Nieszporek_Type-2_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1691856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact