Polymer chains decorated with a fraction of monomers capable of forming reversible bonds form transient polymer networks that are important in soft and biological systems. If chains are flexible and the attractive monomers are all of the same species, the network formation occurs continuously as density increases. By contrast, it has been recently shown [Phys. Rev. Lett. 129, 047801 (2022)] that, if the attractive monomers are of two different and alternating types, the entropic gain of swapping intra-molecular bonds for inter-molecular connections induces a first order phase transition in the fully-bonded (i.e. low-temperature or, equivalently, large monomer-monomer attraction strength) limit and the network forms abruptly on increasing density. Here we use simulations to show that this phenomenon is robust with respect to thermal fluctuations, disorder and change in the polymer architecture, demonstrating its generality and likely relevance for the wide class of materials that can be modelled as associative (transient) polymer networks.

Entropy-driven phase behavior of associative polymer networks / Rovigatti, Lorenzo; Sciortino, Francesco. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 15:4(2023), pp. 1-11. [10.21468/scipostphys.15.4.163]

Entropy-driven phase behavior of associative polymer networks

Lorenzo Rovigatti
;
Francesco Sciortino
2023

Abstract

Polymer chains decorated with a fraction of monomers capable of forming reversible bonds form transient polymer networks that are important in soft and biological systems. If chains are flexible and the attractive monomers are all of the same species, the network formation occurs continuously as density increases. By contrast, it has been recently shown [Phys. Rev. Lett. 129, 047801 (2022)] that, if the attractive monomers are of two different and alternating types, the entropic gain of swapping intra-molecular bonds for inter-molecular connections induces a first order phase transition in the fully-bonded (i.e. low-temperature or, equivalently, large monomer-monomer attraction strength) limit and the network forms abruptly on increasing density. Here we use simulations to show that this phenomenon is robust with respect to thermal fluctuations, disorder and change in the polymer architecture, demonstrating its generality and likely relevance for the wide class of materials that can be modelled as associative (transient) polymer networks.
2023
associative polymers; liquid-liquid phase transition; entropy; polymer networks
01 Pubblicazione su rivista::01a Articolo in rivista
Entropy-driven phase behavior of associative polymer networks / Rovigatti, Lorenzo; Sciortino, Francesco. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 15:4(2023), pp. 1-11. [10.21468/scipostphys.15.4.163]
File allegati a questo prodotto
File Dimensione Formato  
Rovigatti_Entropy-driven_2023.pdf

accesso aperto

Note: Articolo rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1691440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact