Polymer chains decorated with a fraction of monomers capable of forming reversible bonds form transient polymer networks that are important in soft and biological systems. If chains are flexible and the attractive monomers are all of the same species, the network formation occurs continuously as density increases. By contrast, it has been recently shown [Phys. Rev. Lett. 129, 047801 (2022)] that, if the attractive monomers are of two different and alternating types, the entropic gain of swapping intra-molecular bonds for inter-molecular connections induces a first order phase transition in the fully-bonded (i.e. low-temperature or, equivalently, large monomer-monomer attraction strength) limit and the network forms abruptly on increasing density. Here we use simulations to show that this phenomenon is robust with respect to thermal fluctuations, disorder and change in the polymer architecture, demonstrating its generality and likely relevance for the wide class of materials that can be modelled as associative (transient) polymer networks.

Entropy-driven phase behavior of associative polymer networks / Rovigatti, Lorenzo; Sciortino, Francesco. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 15:4(2023). [10.21468/scipostphys.15.4.163]

Entropy-driven phase behavior of associative polymer networks

Lorenzo Rovigatti
;
Francesco Sciortino
2023

Abstract

Polymer chains decorated with a fraction of monomers capable of forming reversible bonds form transient polymer networks that are important in soft and biological systems. If chains are flexible and the attractive monomers are all of the same species, the network formation occurs continuously as density increases. By contrast, it has been recently shown [Phys. Rev. Lett. 129, 047801 (2022)] that, if the attractive monomers are of two different and alternating types, the entropic gain of swapping intra-molecular bonds for inter-molecular connections induces a first order phase transition in the fully-bonded (i.e. low-temperature or, equivalently, large monomer-monomer attraction strength) limit and the network forms abruptly on increasing density. Here we use simulations to show that this phenomenon is robust with respect to thermal fluctuations, disorder and change in the polymer architecture, demonstrating its generality and likely relevance for the wide class of materials that can be modelled as associative (transient) polymer networks.
2023
associative polymers; liquid-liquid phase transition
01 Pubblicazione su rivista::01a Articolo in rivista
Entropy-driven phase behavior of associative polymer networks / Rovigatti, Lorenzo; Sciortino, Francesco. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 15:4(2023). [10.21468/scipostphys.15.4.163]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1691440
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact