Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a technique routinely employed in the qualitative and quantitative analysis of phosphorus speciation in many scientific fields. The data analysis is, however, often performed in a qualitative manner, relying on linear combination fitting protocols or simple comparisons between the experimental data and the spectra of standards, and little quantitative structural and electronic information is thus retrieved. Herein, we report a thorough theoretical investigation of P K-edge XANES spectra of NaH2PO4·H2O, AlPO4, α-Ti(HPO4)2·H2O, and FePO4·2H2O showing excellent agreement with the experimental data. We find that different coordination shells of phosphorus, up to a distance of 5–6 Å from the photoabsorber, contribute to distinct features in the XANES spectra. This high structural sensitivity enables P K-edge XANES spectroscopy to even distinguish between nearly isostructural crystal phases of the same compound. Additionally, we provide a rationalization of the pre-edge transitions observed in the spectra of α-Ti(HPO4)2·H2O and FePO4·2H2O through density of states calculations. These pre-edge transitions are found to be enabled by the covalent mixing of phosphorus s and p orbitals and titanium or iron d orbitals, which happens even though neither metal ion is directly bound to phosphorus in the two systems.

P K-Edge XANES Calculations of Mineral Standards: Exploring the Potential of Theoretical Methods in the Analysis of Phosphorus Speciation / Tofoni, Alessandro; Tavani, Francesco; Persson, Ingmar; D’Angelo, Paola. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - 62:(2023), pp. 11188-11198. [10.1021/acs.inorgchem.3c01346]

P K-Edge XANES Calculations of Mineral Standards: Exploring the Potential of Theoretical Methods in the Analysis of Phosphorus Speciation

Alessandro Tofoni;Francesco Tavani;Paola D’Angelo
2023

Abstract

Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a technique routinely employed in the qualitative and quantitative analysis of phosphorus speciation in many scientific fields. The data analysis is, however, often performed in a qualitative manner, relying on linear combination fitting protocols or simple comparisons between the experimental data and the spectra of standards, and little quantitative structural and electronic information is thus retrieved. Herein, we report a thorough theoretical investigation of P K-edge XANES spectra of NaH2PO4·H2O, AlPO4, α-Ti(HPO4)2·H2O, and FePO4·2H2O showing excellent agreement with the experimental data. We find that different coordination shells of phosphorus, up to a distance of 5–6 Å from the photoabsorber, contribute to distinct features in the XANES spectra. This high structural sensitivity enables P K-edge XANES spectroscopy to even distinguish between nearly isostructural crystal phases of the same compound. Additionally, we provide a rationalization of the pre-edge transitions observed in the spectra of α-Ti(HPO4)2·H2O and FePO4·2H2O through density of states calculations. These pre-edge transitions are found to be enabled by the covalent mixing of phosphorus s and p orbitals and titanium or iron d orbitals, which happens even though neither metal ion is directly bound to phosphorus in the two systems.
2023
P K-edge X-ray absorption spectroscopy
01 Pubblicazione su rivista::01a Articolo in rivista
P K-Edge XANES Calculations of Mineral Standards: Exploring the Potential of Theoretical Methods in the Analysis of Phosphorus Speciation / Tofoni, Alessandro; Tavani, Francesco; Persson, Ingmar; D’Angelo, Paola. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - 62:(2023), pp. 11188-11198. [10.1021/acs.inorgchem.3c01346]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1691317
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact