Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.

Membrane transporters involved in iron trafficking: physiological and pathological aspects / Pasquadibisceglie, Andrea; BONACCORSI DI PATTI, Maria Carmela; Musci, Giovanni; Polticelli, Fabio. - In: BIOMOLECULES. - ISSN 2218-273X. - 13:(2023). [10.3390/biom13081172]

Membrane transporters involved in iron trafficking: physiological and pathological aspects.

Maria Carmela Bonaccorsi di Patti;
2023

Abstract

Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
2023
iron transport; ferroportin; transferrin; DMT1; ZIP8; ZIP14; mitoferrin; pathogenic mutations
01 Pubblicazione su rivista::01a Articolo in rivista
Membrane transporters involved in iron trafficking: physiological and pathological aspects / Pasquadibisceglie, Andrea; BONACCORSI DI PATTI, Maria Carmela; Musci, Giovanni; Polticelli, Fabio. - In: BIOMOLECULES. - ISSN 2218-273X. - 13:(2023). [10.3390/biom13081172]
File allegati a questo prodotto
File Dimensione Formato  
Pasquadibisceglie_Membrane_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1691246
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact