This work presents a compact and sensitive refractive index sensor able to evaluate the concentration of an analyte in a sample. Its working principle leverages on the changes in the optical absorption features introduced by the sample itself on the evanescent waves of a light beam. The device’s high compactness is achieved by embedding the sample–light interaction site and the detector in a 1 cm2 glass substrate, thanks to microelectronics technologies. High sensitivity is obtained by employing a low-noise p-i-n hydrogenated amorphous silicon junction, whose manufacture process requires only four UV lithographic steps on a glass substrate, thus ensuring low production costs. The system’s capabilities are investigated by sensing the sugar content in three commercial beverages. Sensitivities of 32, 53 and 80 pA/% and limits of detection of 47, 29 and 18 ppm are achieved. The above performance is comparable with state-of-the-art results available in the literature, where more complex optical setups, expensive instrumentation and bulky devices are used.
Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages / Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G.. - In: SENSORS. - ISSN 1424-8220. - 23:19(2023), pp. 1-10. [10.3390/s23198184]
Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages
Buzzin A.
;Asquini R.;Caputo D.;de Cesare G.
2023
Abstract
This work presents a compact and sensitive refractive index sensor able to evaluate the concentration of an analyte in a sample. Its working principle leverages on the changes in the optical absorption features introduced by the sample itself on the evanescent waves of a light beam. The device’s high compactness is achieved by embedding the sample–light interaction site and the detector in a 1 cm2 glass substrate, thanks to microelectronics technologies. High sensitivity is obtained by employing a low-noise p-i-n hydrogenated amorphous silicon junction, whose manufacture process requires only four UV lithographic steps on a glass substrate, thus ensuring low production costs. The system’s capabilities are investigated by sensing the sugar content in three commercial beverages. Sensitivities of 32, 53 and 80 pA/% and limits of detection of 47, 29 and 18 ppm are achieved. The above performance is comparable with state-of-the-art results available in the literature, where more complex optical setups, expensive instrumentation and bulky devices are used.File | Dimensione | Formato | |
---|---|---|---|
Buzzin_Sensitive_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.