This work first provides a framework focused on a number of literary reviews carried out at international level to summarise and highlight the possible benefits that can be obtained by GIS and Artificial Intelligence (AI) applications to tackle the emergency caused by the COVID-19 pandemic. Later, the present work gives a synthesis of the applied research conducted in Italy to provide added value, through geospatial and temporal analysis and specific elaborations and functionalities, in the interpretative examination and territorial comparison, the dynamic representation of the phenomenon, the predictive hypotheses and in the implementational measures for the management of critical phases. In the field of the geotechnological proposals, this study then focuses on the Dynamic Space-Time Diffusion Simulator in a GIS Environment developed to analyse the COVID-19 spread in Rome, showing some demonstrative applications based on the data provided by the UOC Hygiene and Public Health Service – Local Health Unit Rome 1, for the period from February 25th to September 26th 2020, which have been elaborated after ad hoc processes of data cleaning and optimisation. In particular, some sets of screenshots extracted by the Simulator are discussed and analysed in order to put in evidence the spatial and diachronic evolution of the phenomenon with reference to: the total number of cases of COVID-19; the total number of deaths due to COVID-19; the total number of cases of COVID-19 with information regarding the different outcomes. Based on accurate geocoding processes and devised as a real-time monitoring and surveillance tool, the Simulator makes it possible to move in the perspectives of precision preparedness, highly detailed territorial screening and interdisciplinary integration, in order to test effective and replicable operational solutions in the cases of emergency.
Questo lavoro fornisce dapprima un quadro incentrato su alcune literary review condotte a livello internazionale per sintetizzare ed evidenziare i possibili benefici traibili dalle applicazioni GIS e di Intelligenza Artificiale (AI) per far fronte all’emergenza provocata dalla pandemia di COVID-19. Successivamente, il lavoro fornisce una rassegna di ricerche applicate svolte in Italia per fornire valore aggiunto, tramite analisi geospaziale e temporale e mediante specifiche elaborazioni e funzionalità, nella disamina interpretativa e di comparazione territoriale, nella rappresentazione dinamica del fenomeno, nelle ipotesi predittive e nelle misure attuative per la gestione delle fasi critiche. Nell’ambito delle proposte geotecnologiche, lo studio si focalizza poi sul Simulatore dinamico di diffusione spazio-temporale in ambiente GIS sviluppato per analizzare la propagazione del COVID-19 a Roma, mostrando alcune applicazioni esemplificative basate sui dati forniti dalla UOC Servizio Igiene e Sanità Pubblica – ASL Roma 1, per il periodo 25 febbraio – 26 settembre 2020, ed elaborati dopo appositi processi di data cleaning e ottimizzazione. In particolare, vengono discussi e analizzati alcuni set di screenshot, estratti dal Simulatore, che evidenziano l’evoluzione spaziale e diacronica del fenomeno con riferimento a: numero totale di casi di COVID-19 nel periodo in esame; numero totale di decessi dovuti a COVID-19; numero totale di casi di COVID-19 con indicazione dei diversi esiti. Il Simulatore, basato su accurati processi di geocoding e pensato quale strumento per il monitoraggio e la sorveglianza in tempo reale, consente di muoversi nell’ottica della preparedness di precisione, degli screening territoriali a elevato grado di dettaglio e dell’integrazione interdisciplinare, al fine di testare soluzioni operative efficaci e replicabili nei casi di emergenza.
Upgrading of a dynamic space-time diffusion simulator in a GIS Environment developed to analyse the COVID-19 spread in Rome. A replicable exemplification / Pesaresi, Cristiano; Pavia, Davide; DE VITO, Corrado. - In: BOLLETTINO DELL'ASSOCIAZIONE ITALIANA DI CARTOGRAFIA. - ISSN 2282-572X. - 175:(2023), pp. 54-74. [10.13137/2282-572X/35440]
Upgrading of a dynamic space-time diffusion simulator in a GIS Environment developed to analyse the COVID-19 spread in Rome. A replicable exemplification
Cristiano Pesaresi
;Davide Pavia;Corrado De Vito
2023
Abstract
This work first provides a framework focused on a number of literary reviews carried out at international level to summarise and highlight the possible benefits that can be obtained by GIS and Artificial Intelligence (AI) applications to tackle the emergency caused by the COVID-19 pandemic. Later, the present work gives a synthesis of the applied research conducted in Italy to provide added value, through geospatial and temporal analysis and specific elaborations and functionalities, in the interpretative examination and territorial comparison, the dynamic representation of the phenomenon, the predictive hypotheses and in the implementational measures for the management of critical phases. In the field of the geotechnological proposals, this study then focuses on the Dynamic Space-Time Diffusion Simulator in a GIS Environment developed to analyse the COVID-19 spread in Rome, showing some demonstrative applications based on the data provided by the UOC Hygiene and Public Health Service – Local Health Unit Rome 1, for the period from February 25th to September 26th 2020, which have been elaborated after ad hoc processes of data cleaning and optimisation. In particular, some sets of screenshots extracted by the Simulator are discussed and analysed in order to put in evidence the spatial and diachronic evolution of the phenomenon with reference to: the total number of cases of COVID-19; the total number of deaths due to COVID-19; the total number of cases of COVID-19 with information regarding the different outcomes. Based on accurate geocoding processes and devised as a real-time monitoring and surveillance tool, the Simulator makes it possible to move in the perspectives of precision preparedness, highly detailed territorial screening and interdisciplinary integration, in order to test effective and replicable operational solutions in the cases of emergency.File | Dimensione | Formato | |
---|---|---|---|
Pesaresi_GIS-Covid19_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.66 MB
Formato
Adobe PDF
|
2.66 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.