The nature of dark matter is still unknown and an experimental program to look for dark matter particles in our Galaxy should extend its sensitivity to light particles in the GeV mass range and exploit the directional information of the DM particle motion (Vahsen et al. in CYGNUS: feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos, arXiv:2008.12587, 2020). The Cygno project is studying a gaseous time projection chamber operated at atmospheric pressure with a Gas Electron Multiplier (Sauli in Nucl Instrum Meth A 386:531, https://doi.org/10.1016/S0168-9002(96)01172-2, 1997) amplification and with an optical readout as a promising technology for light dark matter and directional searches. In this paper we describe the operation of a 50 l prototype named LIME (Long Imaging ModulE) in an overground location at Laboratori Nazionali di Frascati (LNF) of INFN. This prototype employs the technology under study for the 1 cubic meter Cygno demonstrator to be installed at the Laboratori Nazionali del Gran Sasso (LNGS) (Amaro et al. in Instruments 2022, 6(1), https://www.mdpi.com/2410-390X/6/1/6, 2022). We report the characterization of LIME with photon sources in the energy range from few keV to several tens of keV to understand the performance of the energy reconstruction of the emitted electron. We achieved a low energy threshold of few keV and an energy resolution over the whole energy range of 10–20%, while operating the detector for several weeks continuously with very high operational efficiency. The energy spectrum of the reconstructed electrons is then reported and will be the basis to identify radio-contaminants of the LIME materials to be removed for future Cygno detectors.
A 50 l Cygno prototype overground characterization / Amaro, Fernando Domingues; Antonietti, Rita; Baracchini, Elisabetta; Benussi, Luigi; Bianco, Stefano; Borra, Francesco; Capoccia, Cesidio; Caponero, Michele; Cardoso, Danilo Santos; Cavoto, Gianluca; Costa, Igor Abritta; Dané, Emiliano; Dho, Giorgio; Di Giambattista, Flaminia; Di Marco, Emanuele; D’Imperio, Giulia; dos Santos, Joaquim Marques Ferreira; di Cortona, Giovanni Grilli; Iacoangeli, Francesco; Kemp, Ernesto; Júnior, Herman Pessoa Lima; Lopes, Guilherme Sebastiao Pinheiro; Júnior, Amaro da Silva Lopes; Maccarrone, Giovanni; Mano, Rui Daniel Passos; Gregorio, Robert Renz Marcelo; Marques, David José Gaspar; Mazzitelli, Giovanni; Mclean, Alasdair Gregor; Meloni, Pietro; Messina, Andrea; Monteiro, Cristina Maria Bernardes; Nobrega, Rafael Antunes; Pains, Igor Fonseca; Paoletti, Emiliano; Passamonti, Luciano; Pelosi, Sandro; Petrucci, Fabrizio; Piacentini, Stefano; Piccolo, Davide; Pierluigi, Daniele; Pinci, Davide; Prajapati, Atul; Renga, Francesco; Roque, Rita Cruz; Rosatelli, Filippo; Russo, Alessandro; Saviano, Giovanna; Spooner, Neil John Curwen; Tesauro, Roberto; Tomassini, Sandro; Torelli, Samuele; Tozzi, Donatella. - In: EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6052. - 83:10(2023). [10.1140/epjc/s10052-023-11988-9]
A 50 l Cygno prototype overground characterization
Borra, FrancescoMembro del Collaboration Group
;Cavoto, Gianluca
Writing – Original Draft Preparation
;Messina, AndreaMembro del Collaboration Group
;Piacentini, StefanoMembro del Collaboration Group
;Saviano, GiovannaMembro del Collaboration Group
;Tozzi, DonatellaMembro del Collaboration Group
2023
Abstract
The nature of dark matter is still unknown and an experimental program to look for dark matter particles in our Galaxy should extend its sensitivity to light particles in the GeV mass range and exploit the directional information of the DM particle motion (Vahsen et al. in CYGNUS: feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos, arXiv:2008.12587, 2020). The Cygno project is studying a gaseous time projection chamber operated at atmospheric pressure with a Gas Electron Multiplier (Sauli in Nucl Instrum Meth A 386:531, https://doi.org/10.1016/S0168-9002(96)01172-2, 1997) amplification and with an optical readout as a promising technology for light dark matter and directional searches. In this paper we describe the operation of a 50 l prototype named LIME (Long Imaging ModulE) in an overground location at Laboratori Nazionali di Frascati (LNF) of INFN. This prototype employs the technology under study for the 1 cubic meter Cygno demonstrator to be installed at the Laboratori Nazionali del Gran Sasso (LNGS) (Amaro et al. in Instruments 2022, 6(1), https://www.mdpi.com/2410-390X/6/1/6, 2022). We report the characterization of LIME with photon sources in the energy range from few keV to several tens of keV to understand the performance of the energy reconstruction of the emitted electron. We achieved a low energy threshold of few keV and an energy resolution over the whole energy range of 10–20%, while operating the detector for several weeks continuously with very high operational efficiency. The energy spectrum of the reconstructed electrons is then reported and will be the basis to identify radio-contaminants of the LIME materials to be removed for future Cygno detectors.File | Dimensione | Formato | |
---|---|---|---|
Amaro_Cygno-prototype-overground_2023 .pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
4.26 MB
Formato
Adobe PDF
|
4.26 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.