We present here the main research topics and activities on security, safety, and robustness of machine learning models developed at the Pattern Recognition and Applications (PRA) Laboratory of the University of Cagliari. We have provided pioneering contributions to this research area, being the first to demonstrate gradient-based attacks to craft adversarial examples and training data poisoning attacks. The findings of our research have significantly contributed not only to identifying and characterizing vulnerabilities of such models in the context of real-world applications but also to the development of more trustworthy artificial intelligence and machine learning models. We are part of the ELSA network of excellence for the development of safe and secure AI-based technologies, funded by the European Union.

AI Security and Safety: The PRALab Research Experience / Demontis, Ambra; Pintor, Maura; Demetrio, Luca; Sotgiu, Angelo; Angioni, Daniele; Piras, Giorgio; Gupta, Srishti; Biggio, Battista; Roli, Fabio. - 3486:(2023), pp. 324-328. (Intervento presentato al convegno Ital-IA 2023: 3rd National Conference on Artificial Intelligence tenutosi a Pisa, Italy).

AI Security and Safety: The PRALab Research Experience

Daniele Angioni;Giorgio Piras;Srishti Gupta;
2023

Abstract

We present here the main research topics and activities on security, safety, and robustness of machine learning models developed at the Pattern Recognition and Applications (PRA) Laboratory of the University of Cagliari. We have provided pioneering contributions to this research area, being the first to demonstrate gradient-based attacks to craft adversarial examples and training data poisoning attacks. The findings of our research have significantly contributed not only to identifying and characterizing vulnerabilities of such models in the context of real-world applications but also to the development of more trustworthy artificial intelligence and machine learning models. We are part of the ELSA network of excellence for the development of safe and secure AI-based technologies, funded by the European Union.
2023
Ital-IA 2023: 3rd National Conference on Artificial Intelligence
Artificial Intelligence; Security, Safety; Adversarial Machine Learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
AI Security and Safety: The PRALab Research Experience / Demontis, Ambra; Pintor, Maura; Demetrio, Luca; Sotgiu, Angelo; Angioni, Daniele; Piras, Giorgio; Gupta, Srishti; Biggio, Battista; Roli, Fabio. - 3486:(2023), pp. 324-328. (Intervento presentato al convegno Ital-IA 2023: 3rd National Conference on Artificial Intelligence tenutosi a Pisa, Italy).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1690350
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact