Creating search and recommendation models responsibly requires monitoring more than just effectiveness and efficiency. Before moving these models into production, it is imperative to audit training data and evaluate their predictions for bias. Prior work has uncovered and studied the effects of different types of bias that can manifest in search and recommendation results. Despite of the debiasing approaches only recently emerged, there is still a long way to develop trustworthy search and recommendation models. This workshop aims to collect the recent advances in this field and offer a fresh ground for interested scientists from academia and industry. More information about the workshop is available at https://biasinrecsys.github.io/ecir2023/.

Fourth International Workshop on Algorithmic Bias in Search and Recommendation (Bias 2023) / Boratto, L.; Faralli, S.; Marras, M.; Stilo, G.. - 13982:(2023), pp. 373-376. (Intervento presentato al convegno 45th European Conference on Information Retrieval, ECIR 2023 tenutosi a irl) [10.1007/978-3-031-28241-6_39].

Fourth International Workshop on Algorithmic Bias in Search and Recommendation (Bias 2023)

Faralli S.
Co-primo
;
Stilo G.
Co-primo
2023

Abstract

Creating search and recommendation models responsibly requires monitoring more than just effectiveness and efficiency. Before moving these models into production, it is imperative to audit training data and evaluate their predictions for bias. Prior work has uncovered and studied the effects of different types of bias that can manifest in search and recommendation results. Despite of the debiasing approaches only recently emerged, there is still a long way to develop trustworthy search and recommendation models. This workshop aims to collect the recent advances in this field and offer a fresh ground for interested scientists from academia and industry. More information about the workshop is available at https://biasinrecsys.github.io/ecir2023/.
2023
45th European Conference on Information Retrieval, ECIR 2023
Algorithms; Bias; Fairness; Recommendation; Search
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Fourth International Workshop on Algorithmic Bias in Search and Recommendation (Bias 2023) / Boratto, L.; Faralli, S.; Marras, M.; Stilo, G.. - 13982:(2023), pp. 373-376. (Intervento presentato al convegno 45th European Conference on Information Retrieval, ECIR 2023 tenutosi a irl) [10.1007/978-3-031-28241-6_39].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1689813
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact