A finite mixture model for the unsupervised classification of three-way ordinal data is proposed. Technically, it is a finite mixture of Gaussians observed only through a discretization of its variates. Group specific means and covariances are reparameterized according to parsimonious models. Estimation is carried out through a composite approach to reduce the computational burden.
Model-based simultaneous classification and reduction for three - way ordinal data / Ranalli, Monia; Rocci, Roberto. - (2023), pp. 264-267. (Intervento presentato al convegno ClaDAG2023 tenutosi a Salerno).
Model-based simultaneous classification and reduction for three - way ordinal data
Ranalli Monia;Rocci Roberto
2023
Abstract
A finite mixture model for the unsupervised classification of three-way ordinal data is proposed. Technically, it is a finite mixture of Gaussians observed only through a discretization of its variates. Group specific means and covariances are reparameterized according to parsimonious models. Estimation is carried out through a composite approach to reduce the computational burden.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Ranalli_model-based-simultaneous_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
778.23 kB
Formato
Adobe PDF
|
778.23 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.