In this paper, we propose twelve parsimonious models for clustering mixed-type (ordinal and continuous) data. The dependence among the different types of variables is modeled by assuming that ordinal and continuous data follow a multivariate finite mixture of Gaussians, where the ordinal variables are a discretization of some continuous variates of the mixture. The general class of parsimonious models is based on a factor decomposition of the component-specific covariance matrices. Parameter estimation is carried out using a EM-type algorithm based on composite likelihood. The proposal is evaluated through a simulation study and an application to real data.

Composite likelihood methods for parsimonious model-based clustering of mixed-type data / Ranalli, M; Rocci, R. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5347. - (2023), pp. 1-27. [10.1007/s11634-023-00539-5]

Composite likelihood methods for parsimonious model-based clustering of mixed-type data

Ranalli, M;Rocci, R
2023

Abstract

In this paper, we propose twelve parsimonious models for clustering mixed-type (ordinal and continuous) data. The dependence among the different types of variables is modeled by assuming that ordinal and continuous data follow a multivariate finite mixture of Gaussians, where the ordinal variables are a discretization of some continuous variates of the mixture. The general class of parsimonious models is based on a factor decomposition of the component-specific covariance matrices. Parameter estimation is carried out using a EM-type algorithm based on composite likelihood. The proposal is evaluated through a simulation study and an application to real data.
2023
mixture models; factor analyzers; composite likelihood; EM algorithm; mixed-type data
01 Pubblicazione su rivista::01a Articolo in rivista
Composite likelihood methods for parsimonious model-based clustering of mixed-type data / Ranalli, M; Rocci, R. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5347. - (2023), pp. 1-27. [10.1007/s11634-023-00539-5]
File allegati a questo prodotto
File Dimensione Formato  
Ranalli_Composite-likelihood-methods_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 402.16 kB
Formato Adobe PDF
402.16 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1689683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact