This study aims to address the problem of type 1 diabetes by utilizing machine learning techniques and developing a decision support system based on Explainable Artificial Intelligence (XAI). The main research question is to predict the risk of developing type 1 diabetes in a population using different machine learning algorithms, while ensuring interpretability and transparency of the decision support system. The study builds upon a case-control study conducted by previous researchers, who approached the problem from a statistical-parametric perspective.

Explainable and transparency machine learning approach to predict diabetes develop / Curia, Francesco. - In: HEALTH AND TECHNOLOGY. - ISSN 2190-7188. - (2023). [10.1007/s12553-023-00781-z]

Explainable and transparency machine learning approach to predict diabetes develop

Francesco Curia
Primo
Methodology
2023

Abstract

This study aims to address the problem of type 1 diabetes by utilizing machine learning techniques and developing a decision support system based on Explainable Artificial Intelligence (XAI). The main research question is to predict the risk of developing type 1 diabetes in a population using different machine learning algorithms, while ensuring interpretability and transparency of the decision support system. The study builds upon a case-control study conducted by previous researchers, who approached the problem from a statistical-parametric perspective.
2023
diabetes, machine learning, XAI, xgboost
01 Pubblicazione su rivista::01a Articolo in rivista
Explainable and transparency machine learning approach to predict diabetes develop / Curia, Francesco. - In: HEALTH AND TECHNOLOGY. - ISSN 2190-7188. - (2023). [10.1007/s12553-023-00781-z]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1689560
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact