In this work we explore a numerical technique, based on the spherical harmonic decomposition and the discretization of the radial coordinate through Čebyšëv polynomial interpolation, for the computation of quasi-bound states of linear massive scalar and vector perturbations in spinning black hole spacetimes in General Relativity. The aim is studying black hole superradiant instabilities, an energy-extraction mechanism triggered by the presence of massive bosonic fields near black holes, which finds wide applications in constraining scenarios beyond Standard Model and General Relativity. This method does not rely on any separation ansätze, thus it can have wide applications. Consequently we extend the technique so that it can be applied also to the computation of massive tensor quasi-bound states in spinning black holes in General Relativity, whose separability ansatz is currently unknown. We also apply it to spinning black holes in scalar-tensor theory non-linearly interacting with plasma, wherein the massless scalar perturbations acquires an effective mass, finding a novel way for constraining scalar-tensor theories.
Numerical aspects of black hole superradiance / Lingetti, Giuseppe. - (2023 Sep 26).
Numerical aspects of black hole superradiance
LINGETTI, GIUSEPPE
26/09/2023
Abstract
In this work we explore a numerical technique, based on the spherical harmonic decomposition and the discretization of the radial coordinate through Čebyšëv polynomial interpolation, for the computation of quasi-bound states of linear massive scalar and vector perturbations in spinning black hole spacetimes in General Relativity. The aim is studying black hole superradiant instabilities, an energy-extraction mechanism triggered by the presence of massive bosonic fields near black holes, which finds wide applications in constraining scenarios beyond Standard Model and General Relativity. This method does not rely on any separation ansätze, thus it can have wide applications. Consequently we extend the technique so that it can be applied also to the computation of massive tensor quasi-bound states in spinning black holes in General Relativity, whose separability ansatz is currently unknown. We also apply it to spinning black holes in scalar-tensor theory non-linearly interacting with plasma, wherein the massless scalar perturbations acquires an effective mass, finding a novel way for constraining scalar-tensor theories.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Lingetti.pdf
accesso aperto
Note: Tesi completa
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
3.45 MB
Formato
Adobe PDF
|
3.45 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.