Linear Temporal Logic (LTL) is widely used to specify temporal relationships and dynamic constraints for autonomous agents. However, in order to be used in practice in real-world domains, this high-level knowledge must be grounded in the task domain and integrated with perception and learning modules that are intrinsically continuous and subsymbolic. In this short paper, I describe many ways to integrate formal symbolic knowledge in LTL in non-symbolic domains using deep-learning modules and neuro-symbolic techniques, and I discuss the results obtained in different kinds of applications, ranging from classification of complex data to DFA induction to non-Markovian Reinforcement Learning.

Neurosymbolic Integration of Linear Temporal Logic in Non Symbolic Domains / Umili, Elena. - 14282 LNAI:(2023), pp. 521-527. (Intervento presentato al convegno 20th European Conference of Multi-Agents Systems (EUMAS 2023) tenutosi a Naples, Italy) [10.1007/978-3-031-43264-4_41].

Neurosymbolic Integration of Linear Temporal Logic in Non Symbolic Domains

Elena Umili
2023

Abstract

Linear Temporal Logic (LTL) is widely used to specify temporal relationships and dynamic constraints for autonomous agents. However, in order to be used in practice in real-world domains, this high-level knowledge must be grounded in the task domain and integrated with perception and learning modules that are intrinsically continuous and subsymbolic. In this short paper, I describe many ways to integrate formal symbolic knowledge in LTL in non-symbolic domains using deep-learning modules and neuro-symbolic techniques, and I discuss the results obtained in different kinds of applications, ranging from classification of complex data to DFA induction to non-Markovian Reinforcement Learning.
2023
20th European Conference of Multi-Agents Systems (EUMAS 2023)
neurosymbolic ai; linear temporal logic; deep learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Neurosymbolic Integration of Linear Temporal Logic in Non Symbolic Domains / Umili, Elena. - 14282 LNAI:(2023), pp. 521-527. (Intervento presentato al convegno 20th European Conference of Multi-Agents Systems (EUMAS 2023) tenutosi a Naples, Italy) [10.1007/978-3-031-43264-4_41].
File allegati a questo prodotto
File Dimensione Formato  
Umili_postprint_Neurosymbolic_2023.pdf

accesso aperto

Note: https://dx.doi.org/10.1007/978-3-031-43264-4_41
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 241.77 kB
Formato Adobe PDF
241.77 kB Adobe PDF
Umili_Neurosymbolic_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 410.88 kB
Formato Adobe PDF
410.88 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1688958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact