The research presented aimed to address the treatment of fluid waste with significant environmental impact by utilizing plasma technology, specifically plasma arc flow (PAF). The goal was to develop a novel purification material based on graphene for industrial applications and to optimize the treatment process. Analysis and monitoring of a submerged arc plasma reactor were the main goals of this research. This entailed a careful examination of the incoming wastewater that needed to be treated with the goal of identifying its precise composition characteristics with the relative tolerances needed for the reactions that were to follow in the reactor. The focus of the analysis was on input-parameter optimization, production of characteristic curves, and analysis of the factors affecting hydrogen evolution in syngas. Additionally, the study investigated how to determine the best viscosity for a particular input matrix by carrying out an evaluation study. The effects of this parameter were thought to be reduced by preheating the incoming wastewater through heat recovery. The long-term objective of the research is to create filters that can purify the water used and produced in gasification processes as well as to characterize the fixed reside from the gasifier for potential conversion into graphene-based material. In addition, this work acknowledges that additional experiments are required to validate its purifying capacity on wastewater produced by various industrial processes. Moreover, the inclusion of plans to model the evolution of hydrogen in PAF using the CHEMCAD software® and defining guidelines for optimizing parameters for enhanced energy efficiency showcased the research’s ambition to expand and refine its scope. Finding the best plant solutions that can significantly reduce electricity consumption is the ultimate goal. In summary, the study demonstrated significant advancement in the analysis and optimization of fluid-waste treatment with high environmental impact through the use of plasma technology, specifically PAF. A thorough and forward-looking approach was demonstrated by the use of modeling software, experimental studies, and plans for future research. The potential creation of graphene-based filters and the use of the fixed residue as a useful material further highlight the innovativeness of this research.

Plasma-arc-flow technology for sustainable treatment of high-impact fluid waste. A graphene-based material for industrial-wastewater purification / Mongiello, C.; Ghoreishi, M.; Sharma, V. K.; Verdoliva, L.; Aprea, S.; Venturini, P.; Pesce, G.. - In: PROCESSES. - ISSN 2227-9717. - 11:8(2023), pp. 1-17. [10.3390/pr11082307]

Plasma-arc-flow technology for sustainable treatment of high-impact fluid waste. A graphene-based material for industrial-wastewater purification

Ghoreishi M.
;
Venturini P.;
2023

Abstract

The research presented aimed to address the treatment of fluid waste with significant environmental impact by utilizing plasma technology, specifically plasma arc flow (PAF). The goal was to develop a novel purification material based on graphene for industrial applications and to optimize the treatment process. Analysis and monitoring of a submerged arc plasma reactor were the main goals of this research. This entailed a careful examination of the incoming wastewater that needed to be treated with the goal of identifying its precise composition characteristics with the relative tolerances needed for the reactions that were to follow in the reactor. The focus of the analysis was on input-parameter optimization, production of characteristic curves, and analysis of the factors affecting hydrogen evolution in syngas. Additionally, the study investigated how to determine the best viscosity for a particular input matrix by carrying out an evaluation study. The effects of this parameter were thought to be reduced by preheating the incoming wastewater through heat recovery. The long-term objective of the research is to create filters that can purify the water used and produced in gasification processes as well as to characterize the fixed reside from the gasifier for potential conversion into graphene-based material. In addition, this work acknowledges that additional experiments are required to validate its purifying capacity on wastewater produced by various industrial processes. Moreover, the inclusion of plans to model the evolution of hydrogen in PAF using the CHEMCAD software® and defining guidelines for optimizing parameters for enhanced energy efficiency showcased the research’s ambition to expand and refine its scope. Finding the best plant solutions that can significantly reduce electricity consumption is the ultimate goal. In summary, the study demonstrated significant advancement in the analysis and optimization of fluid-waste treatment with high environmental impact through the use of plasma technology, specifically PAF. A thorough and forward-looking approach was demonstrated by the use of modeling software, experimental studies, and plans for future research. The potential creation of graphene-based filters and the use of the fixed residue as a useful material further highlight the innovativeness of this research.
2023
energy efficiency; graphene; optimization; plasma arc flow; wastewater treatment
01 Pubblicazione su rivista::01a Articolo in rivista
Plasma-arc-flow technology for sustainable treatment of high-impact fluid waste. A graphene-based material for industrial-wastewater purification / Mongiello, C.; Ghoreishi, M.; Sharma, V. K.; Verdoliva, L.; Aprea, S.; Venturini, P.; Pesce, G.. - In: PROCESSES. - ISSN 2227-9717. - 11:8(2023), pp. 1-17. [10.3390/pr11082307]
File allegati a questo prodotto
File Dimensione Formato  
Mongiello_Plasma_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1688872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact