The strength of tectonic faults and the processes that control earthquake rupture remain central questions in fault mechanics and earthquake science. We report on the frictional strength and constitutive properties of intact samples across the main creeping strand of the San Andreas fault (SAF; California, United States) recovered by deep drilling. We find that the fault is extremely weak (friction coefficient, μ = ∼ 0.10), and exhibits both velocity strengthening frictional behavior and anomalously low rates of frictional healing, consistent with aseismic creep. In contrast, wall rock to the northeast shows velocity weakening frictional behavior and positive healing rates, consistent with observed repeating earthquakes on nearby fault strands. We also document a sharp increase in strength to values of μ > ∼0.40 over <1 m distance at the boundary between the fault and adjacent wall rock. The friction values for the SAF are sufficiently low to explain its apparent weakness as inferred from heat flow and stress orientation data. Our results may also indicate that the shear strength of the SAF should remain approximately constant at ∼10 MPa in the upper 5-8 km, rather than increasing linearly with depth, as is commonly assumed. Taken together, our data explain why the main strand of the SAF in central California is weak, extremely localized, and exhibits aseismic creep, while nearby fault strands host repeating earthquakes. © 2012 Geological Society of America.

Frictional properties and sliding stability of the San Andreas fault from deep drill core / Carpenter, B. M.; Saffer, D. M.; Marone, C. J.. - In: GEOLOGY. - ISSN 0091-7613. - 40:8(2012), pp. 759-762. [10.1130/G33007.1]

Frictional properties and sliding stability of the San Andreas fault from deep drill core

Marone C. J.
Membro del Collaboration Group
2012

Abstract

The strength of tectonic faults and the processes that control earthquake rupture remain central questions in fault mechanics and earthquake science. We report on the frictional strength and constitutive properties of intact samples across the main creeping strand of the San Andreas fault (SAF; California, United States) recovered by deep drilling. We find that the fault is extremely weak (friction coefficient, μ = ∼ 0.10), and exhibits both velocity strengthening frictional behavior and anomalously low rates of frictional healing, consistent with aseismic creep. In contrast, wall rock to the northeast shows velocity weakening frictional behavior and positive healing rates, consistent with observed repeating earthquakes on nearby fault strands. We also document a sharp increase in strength to values of μ > ∼0.40 over <1 m distance at the boundary between the fault and adjacent wall rock. The friction values for the SAF are sufficiently low to explain its apparent weakness as inferred from heat flow and stress orientation data. Our results may also indicate that the shear strength of the SAF should remain approximately constant at ∼10 MPa in the upper 5-8 km, rather than increasing linearly with depth, as is commonly assumed. Taken together, our data explain why the main strand of the SAF in central California is weak, extremely localized, and exhibits aseismic creep, while nearby fault strands host repeating earthquakes. © 2012 Geological Society of America.
2012
friction, earthquakes
01 Pubblicazione su rivista::01a Articolo in rivista
Frictional properties and sliding stability of the San Andreas fault from deep drill core / Carpenter, B. M.; Saffer, D. M.; Marone, C. J.. - In: GEOLOGY. - ISSN 0091-7613. - 40:8(2012), pp. 759-762. [10.1130/G33007.1]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1688280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? ND
social impact