Earthquake systems are commonly described using rate and state dependent fault models; however, the connection between rate and state friction parameters and specific microprocesses remains a challenge. We present new laboratory observations using modern ultrasonic techniques to reveal dynamic processes operating during frictional sliding. Granular layers were sheared under constant normal stress for a range of loading rates. During experiments, we monitored high-frequency acoustic emissions (AE) generated by grain fracture and friction using an array of piezoelectric transducers surrounding the layers. Complete waveforms and event information were collected for thousands of microearthquakes. Perturbations in imposed load point velocity (V) produced a friction response consistent with previous work. For a given V, AE per sec decreased with accumulated slip, suggesting sensitivity to gouge layer evolution. Step increases in V led to immediate and sustained increases in AE per sec; the converse was true for V decreases. The positive rate dependence of AE per second is unsurprising because more slip is covered per unit time at higher V; however, AE per unit slip decreases with increasing V, indicating a deficit of acoustic activity at a faster slip rate. Assuming that AE result mainly from grain contact sliding, acoustic activity is proportional to the real area of contact between sliding particles. Our results qualitatively agree with previous experiments carried out on bare rock surfaces and support ideas that the frictional contact junction area is reduced at increased sliding velocity. We highlight a new way to visualize micromechanical contact processes important in frictional mechanics and highly relevant to earthquake physics.

Rate dependence of acoustic emissions generated during shear of simulated fault gouge / Mair, K.; Marone, C. J.; Young, R. P.. - In: BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA. - ISSN 0037-1106. - 97:6(2007), pp. 1841-1849. [10.1785/0120060242]

Rate dependence of acoustic emissions generated during shear of simulated fault gouge

Marone C. J.
Membro del Collaboration Group
;
2007

Abstract

Earthquake systems are commonly described using rate and state dependent fault models; however, the connection between rate and state friction parameters and specific microprocesses remains a challenge. We present new laboratory observations using modern ultrasonic techniques to reveal dynamic processes operating during frictional sliding. Granular layers were sheared under constant normal stress for a range of loading rates. During experiments, we monitored high-frequency acoustic emissions (AE) generated by grain fracture and friction using an array of piezoelectric transducers surrounding the layers. Complete waveforms and event information were collected for thousands of microearthquakes. Perturbations in imposed load point velocity (V) produced a friction response consistent with previous work. For a given V, AE per sec decreased with accumulated slip, suggesting sensitivity to gouge layer evolution. Step increases in V led to immediate and sustained increases in AE per sec; the converse was true for V decreases. The positive rate dependence of AE per second is unsurprising because more slip is covered per unit time at higher V; however, AE per unit slip decreases with increasing V, indicating a deficit of acoustic activity at a faster slip rate. Assuming that AE result mainly from grain contact sliding, acoustic activity is proportional to the real area of contact between sliding particles. Our results qualitatively agree with previous experiments carried out on bare rock surfaces and support ideas that the frictional contact junction area is reduced at increased sliding velocity. We highlight a new way to visualize micromechanical contact processes important in frictional mechanics and highly relevant to earthquake physics.
2007
friction, earthquakes
01 Pubblicazione su rivista::01a Articolo in rivista
Rate dependence of acoustic emissions generated during shear of simulated fault gouge / Mair, K.; Marone, C. J.; Young, R. P.. - In: BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA. - ISSN 0037-1106. - 97:6(2007), pp. 1841-1849. [10.1785/0120060242]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1688267
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact