This paper presents seventy new experimental results from PMMA notched specimens tested under torsion at -60 °C. The notch root radius ranges from 0.025 to 7.0. mm. At this temperature the non-linear effects previously observed on specimens of the same material tested at room temperature strongly reduce. The averaged value of the strain energy density over a control volume is used to assess the critical loads to failure. The radius of the control volume and the critical strain energy density are evaluated a priori by using in combination the mode III critical stress intensity factor from cracked-like specimens and the critical stress to failure detected from semicircular notches with a large notch root radius. © 2013 Elsevier Ltd.
Fracture behaviour of notched round bars made of PMMA subjected to torsion at -60°C / Berto, F.; Cendon, D. A.; Lazzarin, P.; Elices, M.. - In: ENGINEERING FRACTURE MECHANICS. - ISSN 0013-7944. - 102:(2013), pp. 271-287. [10.1016/j.engfracmech.2013.02.011]
Fracture behaviour of notched round bars made of PMMA subjected to torsion at -60°C
Berto F.;
2013
Abstract
This paper presents seventy new experimental results from PMMA notched specimens tested under torsion at -60 °C. The notch root radius ranges from 0.025 to 7.0. mm. At this temperature the non-linear effects previously observed on specimens of the same material tested at room temperature strongly reduce. The averaged value of the strain energy density over a control volume is used to assess the critical loads to failure. The radius of the control volume and the critical strain energy density are evaluated a priori by using in combination the mode III critical stress intensity factor from cracked-like specimens and the critical stress to failure detected from semicircular notches with a large notch root radius. © 2013 Elsevier Ltd.File | Dimensione | Formato | |
---|---|---|---|
Berto_Fracture-behavior-notched-round-bars_2013.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.