Enhanced Geothermal Systems could provide a substantial contribution to the global energy demand if their implementation could overcome inherent challenges. Examples are insufficient created permeability, early thermal breakthrough, and unacceptable induced seismicity. Here we report on the seismic response of a mesoscale hydraulic fracturing experiment performed at 1.5-km depth at the Sanford Underground Research Facility. We have measured the seismic activity by utilizing a 100-kHz, continuous seismic monitoring system deployed in six 60-m length monitoring boreholes surrounding the experimental domain in 3-D. The achieved location uncertainty was on the order of 1 m and limited by the signal-to-noise ratio of detected events. These uncertainties were corroborated by detections of fracture intersections at the monitoring boreholes. Three intervals of the dedicated injection borehole were hydraulically stimulated by water injection at pressures up to 33 MPa and flow rates up to 5 L/min. We located 1,933 seismic events during several injection periods. The recorded seismicity delineates a complex fracture network comprised of multistrand hydraulic fractures and shear-reactivated, preexisting planes of weakness that grew unilaterally from the point of initiation. We find that heterogeneity of stress dictates the seismic outcome of hydraulic stimulations, even when relying on theoretically well-behaved hydraulic fractures. Once hydraulic fractures intersected boreholes, the boreholes acted as a pressure relief and fracture propagation ceased. In order to create an efficient subsurface heat exchanger, production boreholes should not be drilled before the end of hydraulic stimulations.

Creation of a mixed‐mode fracture network at mesoscale through hydraulic fracturing and shear stimulation / Schoenball, M.; Ajo-Franklin, J. B.; Blankenship, D.; Chai, C.; Chakravarty, A.; Dobson, P.; Hopp, C.; Kneafsey, T.; Knox, H. A.; Maceira, M.; Robertson, M. C.; Sprinkle, P.; Strickland, C.; Templeton, D.; Schwering, P. C.; Ulrich, C.; Wood, T.; Ajo-Franklin, J.; Baumgartner, T.; Beckers, K.; Blankenship, D.; Bonneville, A.; Boyd, L.; Brown, S.; Burghardt, J. A.; Chai, C.; Chakravarty, A.; Chen, T.; Chen, Y.; Chi, B.; Condon, K.; Cook, P. J.; Crandall, D.; Dobson, P. F.; Doe, T.; Doughty, C. A.; Elsworth, D.; Feldman, J.; Feng, Z.; Foris, A.; Frash, L. P.; Frone, Z.; Fu, P.; Gao, K.; Ghassemi, A.; Guglielmi, Y.; Haimson, B.; Hawkins, A.; Heise, J.; Hopp, C.; Horn, M.; Horne, R. N.; Horner, J.; Hu, M.; Huang, H.; Huang, L.; Im, K. J.; Ingraham, M.; Jafarov, E.; Jayne, R. S.; Johnson, T. C.; Johnson, S. E.; Johnston, B.; Karra, S.; Kim, K.; King, D. K.; Kneafsey, T.; Knox, H.; Knox, J.; Kumar, D.; Kutun, K.; Lee, M.; Li, K.; Li, Z.; Maceira, M.; Mackey, P.; Makedonska, N.; Marone, C. J.; Mattson, E.; Mcclure, M. W.; Mclennan, J.; Mcling, T.; Medler, C.; Mellors, R. J.; Metcalfe, E.; Miskimins, J.; Moore, J.; Morency, C. E.; Morris, J. P.; Myers, T.; Nakagawa, S.; Neupane, G.; Newman, G.; Nieto, A.; Paronish, T.; Pawar, R.; Petrov, P.; Pietzyk, B.; Podgorney, R.; Polsky, Y.; Pope, J.; Porse, S.; Primo, J. C.; Reimers, C.; Roberts, B. Q.; Robertson, M.; Rodriguez-Tribaldos, V.; Roggenthen, W.; Rutqvist, J.; Rynders, D.; Schoenball, M.; Schwering, P.; Sesetty, V.; Sherman, C. S.; Singh, A.; Smith, M. M.; Sone, H.; Sonnenthal, E. L.; Soom, F. A.; Sprinkle, D. P.; Sprinkle, S.; Strickland, C. E.; Su, J.; Templeton, D.; Thomle, J. N.; Ulrich, C.; Uzunlar, N.; Vachaparampil, A.; Valladao, C. A.; Vandermeer, W.; Vandine, G.; Vardiman, D.; Vermeul, V. R.; Wagoner, J. L.; Wang, H. F.; Weers, J.; Welch, N.; White, J.; White, M. D.; Winterfeld, P.; Wood, T.; Workman, S.; Wu, H.; Wu, Y. S.; Yildirim, E. C.; Zhang, Y.; Zhang, Y. Q.; Zhou, Q.; Zoback, M. D.. - In: JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH. - ISSN 2169-9313. - 125:12(2020), pp. 1-21. [10.1029/2020JB019807]

Creation of a mixed‐mode fracture network at mesoscale through hydraulic fracturing and shear stimulation

Marone C. J.
Membro del Collaboration Group
;
Wood T.;Wu H.;
2020

Abstract

Enhanced Geothermal Systems could provide a substantial contribution to the global energy demand if their implementation could overcome inherent challenges. Examples are insufficient created permeability, early thermal breakthrough, and unacceptable induced seismicity. Here we report on the seismic response of a mesoscale hydraulic fracturing experiment performed at 1.5-km depth at the Sanford Underground Research Facility. We have measured the seismic activity by utilizing a 100-kHz, continuous seismic monitoring system deployed in six 60-m length monitoring boreholes surrounding the experimental domain in 3-D. The achieved location uncertainty was on the order of 1 m and limited by the signal-to-noise ratio of detected events. These uncertainties were corroborated by detections of fracture intersections at the monitoring boreholes. Three intervals of the dedicated injection borehole were hydraulically stimulated by water injection at pressures up to 33 MPa and flow rates up to 5 L/min. We located 1,933 seismic events during several injection periods. The recorded seismicity delineates a complex fracture network comprised of multistrand hydraulic fractures and shear-reactivated, preexisting planes of weakness that grew unilaterally from the point of initiation. We find that heterogeneity of stress dictates the seismic outcome of hydraulic stimulations, even when relying on theoretically well-behaved hydraulic fractures. Once hydraulic fractures intersected boreholes, the boreholes acted as a pressure relief and fracture propagation ceased. In order to create an efficient subsurface heat exchanger, production boreholes should not be drilled before the end of hydraulic stimulations.
2020
enhanced geothermal systems; induced seismicity; mesoscale
01 Pubblicazione su rivista::01a Articolo in rivista
Creation of a mixed‐mode fracture network at mesoscale through hydraulic fracturing and shear stimulation / Schoenball, M.; Ajo-Franklin, J. B.; Blankenship, D.; Chai, C.; Chakravarty, A.; Dobson, P.; Hopp, C.; Kneafsey, T.; Knox, H. A.; Maceira, M.; Robertson, M. C.; Sprinkle, P.; Strickland, C.; Templeton, D.; Schwering, P. C.; Ulrich, C.; Wood, T.; Ajo-Franklin, J.; Baumgartner, T.; Beckers, K.; Blankenship, D.; Bonneville, A.; Boyd, L.; Brown, S.; Burghardt, J. A.; Chai, C.; Chakravarty, A.; Chen, T.; Chen, Y.; Chi, B.; Condon, K.; Cook, P. J.; Crandall, D.; Dobson, P. F.; Doe, T.; Doughty, C. A.; Elsworth, D.; Feldman, J.; Feng, Z.; Foris, A.; Frash, L. P.; Frone, Z.; Fu, P.; Gao, K.; Ghassemi, A.; Guglielmi, Y.; Haimson, B.; Hawkins, A.; Heise, J.; Hopp, C.; Horn, M.; Horne, R. N.; Horner, J.; Hu, M.; Huang, H.; Huang, L.; Im, K. J.; Ingraham, M.; Jafarov, E.; Jayne, R. S.; Johnson, T. C.; Johnson, S. E.; Johnston, B.; Karra, S.; Kim, K.; King, D. K.; Kneafsey, T.; Knox, H.; Knox, J.; Kumar, D.; Kutun, K.; Lee, M.; Li, K.; Li, Z.; Maceira, M.; Mackey, P.; Makedonska, N.; Marone, C. J.; Mattson, E.; Mcclure, M. W.; Mclennan, J.; Mcling, T.; Medler, C.; Mellors, R. J.; Metcalfe, E.; Miskimins, J.; Moore, J.; Morency, C. E.; Morris, J. P.; Myers, T.; Nakagawa, S.; Neupane, G.; Newman, G.; Nieto, A.; Paronish, T.; Pawar, R.; Petrov, P.; Pietzyk, B.; Podgorney, R.; Polsky, Y.; Pope, J.; Porse, S.; Primo, J. C.; Reimers, C.; Roberts, B. Q.; Robertson, M.; Rodriguez-Tribaldos, V.; Roggenthen, W.; Rutqvist, J.; Rynders, D.; Schoenball, M.; Schwering, P.; Sesetty, V.; Sherman, C. S.; Singh, A.; Smith, M. M.; Sone, H.; Sonnenthal, E. L.; Soom, F. A.; Sprinkle, D. P.; Sprinkle, S.; Strickland, C. E.; Su, J.; Templeton, D.; Thomle, J. N.; Ulrich, C.; Uzunlar, N.; Vachaparampil, A.; Valladao, C. A.; Vandermeer, W.; Vandine, G.; Vardiman, D.; Vermeul, V. R.; Wagoner, J. L.; Wang, H. F.; Weers, J.; Welch, N.; White, J.; White, M. D.; Winterfeld, P.; Wood, T.; Workman, S.; Wu, H.; Wu, Y. S.; Yildirim, E. C.; Zhang, Y.; Zhang, Y. Q.; Zhou, Q.; Zoback, M. D.. - In: JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH. - ISSN 2169-9313. - 125:12(2020), pp. 1-21. [10.1029/2020JB019807]
File allegati a questo prodotto
File Dimensione Formato  
Schoenball_Creation_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.53 MB
Formato Adobe PDF
5.53 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1687647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 29
social impact