Atiyah's classical work on circular symmetry and stationary phase shows how the (A) over cap genus is obtained by formally applying the equivariant cohomology localization formula to the loop space of a simply connected spin manifold. The same technique, applied to a suitable "antiholomorphic sector" in the C/A-equivariant cohomology of the conformal double loop space Maps(C/A, X) of a rationally string manifold X produces the Witten genus of X. This can be seen as an equivariant localization counterpart to Berwick-Evans supersymmetric localization derivation of the Witten genus. (c) 2023 Elsevier B.V. All rights reserved.
The (anti-)holomorphic sector in C/Λ-equivariant cohomology, and the Witten class / Coloma, Mattia; Fiorenza, Domenico; Landi, Eugenio. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 186:(2023). [10.1016/j.geomphys.2023.104750]
The (anti-)holomorphic sector in C/Λ-equivariant cohomology, and the Witten class
Mattia Coloma;Domenico Fiorenza;Eugenio Landi
2023
Abstract
Atiyah's classical work on circular symmetry and stationary phase shows how the (A) over cap genus is obtained by formally applying the equivariant cohomology localization formula to the loop space of a simply connected spin manifold. The same technique, applied to a suitable "antiholomorphic sector" in the C/A-equivariant cohomology of the conformal double loop space Maps(C/A, X) of a rationally string manifold X produces the Witten genus of X. This can be seen as an equivariant localization counterpart to Berwick-Evans supersymmetric localization derivation of the Witten genus. (c) 2023 Elsevier B.V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Coloma_The-(anti-)holomorphic_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
569.69 kB
Formato
Adobe PDF
|
569.69 kB | Adobe PDF | Contatta l'autore |
Coloma_preprint_The-(anti-)holomorphic_2023.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
418.62 kB
Formato
Adobe PDF
|
418.62 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.