The phenomenon of one-inflation frequently affects the estimates of population size when the available dare are represented by frequencies of counts. A particular behavioral effect preventing subsequent captures after the first one may be the reason for such an effect. We consider a Bayesian semi-parametric approach by fitting a truncated Dirichlet process mixture model as a base tool for modeling repeated count data and extend this class to include one–inflation. The proposed methodology is briefly illustrated via a real data application.

One-inflated Bayesian Mixtures for population size estimation / DI CECCO, Davide; Tancredi, Andrea; Tuoto, Tiziana. - (2023), pp. 423-426. (Intervento presentato al convegno 14th Scientifc Meeting of the Classification and Data Analysis Group tenutosi a Salerno; Italy).

One-inflated Bayesian Mixtures for population size estimation

Davide Di Cecco;Andrea Tancredi;Tiziana Tuoto
2023

Abstract

The phenomenon of one-inflation frequently affects the estimates of population size when the available dare are represented by frequencies of counts. A particular behavioral effect preventing subsequent captures after the first one may be the reason for such an effect. We consider a Bayesian semi-parametric approach by fitting a truncated Dirichlet process mixture model as a base tool for modeling repeated count data and extend this class to include one–inflation. The proposed methodology is briefly illustrated via a real data application.
2023
14th Scientifc Meeting of the Classification and Data Analysis Group
capture-recapture; Dirichlet process mixture; repeated count data
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
One-inflated Bayesian Mixtures for population size estimation / DI CECCO, Davide; Tancredi, Andrea; Tuoto, Tiziana. - (2023), pp. 423-426. (Intervento presentato al convegno 14th Scientifc Meeting of the Classification and Data Analysis Group tenutosi a Salerno; Italy).
File allegati a questo prodotto
File Dimensione Formato  
Tancredi_One-inflated -CLADAG_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1687422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact