Devising a strategy to make a system mimic behaviors from another system is a problem that naturally arises in many areas of Computer Science. In this work, we interpret this problem in the context of intelligent agents, from the perspective of LTLf , a formalism commonly used in AI for expressing finite-trace properties. Our model consists of two separated dynamic domains, DA and DB , and an LTLf specification that formalizes the notion of mimicking by mapping properties on behaviors (traces) of DA into properties on behaviors of DB . The goal is to synthesize a strategy that step-by-step maps every behavior of DA into a behavior of DB so that the specification is met. We consider several forms of mapping specifications, ranging from simple ones to full LTLf , and for each, we study synthesis algorithms and computational properties.

Mimicking Behaviors in Separated Domains / De Giacomo, G.; Fried, D.; Patrizi, F.; Zhu, S.. - In: THE JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH. - ISSN 1076-9757. - 77:(2023), pp. 1087-1112. [10.1613/jair.1.14591]

Mimicking Behaviors in Separated Domains

De Giacomo G.;Patrizi F.;Zhu S.
2023

Abstract

Devising a strategy to make a system mimic behaviors from another system is a problem that naturally arises in many areas of Computer Science. In this work, we interpret this problem in the context of intelligent agents, from the perspective of LTLf , a formalism commonly used in AI for expressing finite-trace properties. Our model consists of two separated dynamic domains, DA and DB , and an LTLf specification that formalizes the notion of mimicking by mapping properties on behaviors (traces) of DA into properties on behaviors of DB . The goal is to synthesize a strategy that step-by-step maps every behavior of DA into a behavior of DB so that the specification is met. We consider several forms of mapping specifications, ranging from simple ones to full LTLf , and for each, we study synthesis algorithms and computational properties.
2023
strategy synthesis; LTL on finite traces; mimicking
01 Pubblicazione su rivista::01a Articolo in rivista
Mimicking Behaviors in Separated Domains / De Giacomo, G.; Fried, D.; Patrizi, F.; Zhu, S.. - In: THE JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH. - ISSN 1076-9757. - 77:(2023), pp. 1087-1112. [10.1613/jair.1.14591]
File allegati a questo prodotto
File Dimensione Formato  
DeGiacomo_Mimicking_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 353.12 kB
Formato Adobe PDF
353.12 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1687383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact