Objective: Earlier evidence suggested that structural-functional covariation in schizophrenia patients (SCZ) is associated with cognition, a predictor of functioning. Moreover, studies suggested that functional brain abnormalities of schizophrenia may be related with structural network features. However, only few studies have investigated the relationship between structural-functional covariation and both diagnosis and functioning in SCZ. We hypothesized that structural-functional covariation networks associated with diagnosis are related to real-world functioning in SCZ.Methods: We performed joint Independent Component Analysis on T1 images and resting-state fMRI-based Degree Centrality (DC) maps from 89 SCZ and 285 controls. Structural-functional covariation networks in which we found a main effect of diagnosis underwent correlation analysis to investigate their relationship with functioning. Covariation networks showing a significant association with both diagnosis and functioning underwent univariate analysis to better characterize group-level differences at the spatial level.Results: A structural-functional covariation network characterized by frontal, temporal, parietal and thalamic structural estimates significantly covaried with temporo-parietal resting-state DC. Compared with controls, SCZ had reduced structural-functional covariation within this network (p(FDR) = 0.005). The same measure correlated positively with both social and occupational functioning (both p(FDR) = 0.042). Univariate analyses revealed grey matter deviations in SCZ compared with controls within this structural-functional network in hippocampus, cerebellum, thalamus, orbito-frontal cortex, and insula. No group differences were found in DC.Conclusions: Findings support the existence of a phenotypical association between group-level differences and inter-individual heterogeneity of functional deficits in SCZ. Given that only the joint structural/functional analysis revealed this association, structural-functional covariation may be a potentially relevant schizophrenia phenotype.
Joint structural-functional magnetic resonance imaging features are associated with diagnosis and real-world functioning in patients with schizophrenia / Antonucci, Linda A; Fazio, Leonardo; Pergola, Giulio; Blasi, Giuseppe; Stolfa, Giuseppe; Di Palo, Piergiuseppe; Mucci, Armida; Rocca, Paola; Brasso, Claudio; di Giannantonio, Massimo; Maria Giordano, Giulia; Monteleone, Palmiero; Pompili, Maurizio; Siracusano, Alberto; Bertolino, Alessandro; Galderisi, Silvana; Maj, Mario. - In: SCHIZOPHRENIA RESEARCH. - ISSN 0920-9964. - 240:(2022), pp. 193-203. [10.1016/j.schres.2021.12.029]
Joint structural-functional magnetic resonance imaging features are associated with diagnosis and real-world functioning in patients with schizophrenia
Stolfa, Giuseppe;Maria Giordano, Giulia;Pompili, Maurizio;Siracusano, Alberto;
2022
Abstract
Objective: Earlier evidence suggested that structural-functional covariation in schizophrenia patients (SCZ) is associated with cognition, a predictor of functioning. Moreover, studies suggested that functional brain abnormalities of schizophrenia may be related with structural network features. However, only few studies have investigated the relationship between structural-functional covariation and both diagnosis and functioning in SCZ. We hypothesized that structural-functional covariation networks associated with diagnosis are related to real-world functioning in SCZ.Methods: We performed joint Independent Component Analysis on T1 images and resting-state fMRI-based Degree Centrality (DC) maps from 89 SCZ and 285 controls. Structural-functional covariation networks in which we found a main effect of diagnosis underwent correlation analysis to investigate their relationship with functioning. Covariation networks showing a significant association with both diagnosis and functioning underwent univariate analysis to better characterize group-level differences at the spatial level.Results: A structural-functional covariation network characterized by frontal, temporal, parietal and thalamic structural estimates significantly covaried with temporo-parietal resting-state DC. Compared with controls, SCZ had reduced structural-functional covariation within this network (p(FDR) = 0.005). The same measure correlated positively with both social and occupational functioning (both p(FDR) = 0.042). Univariate analyses revealed grey matter deviations in SCZ compared with controls within this structural-functional network in hippocampus, cerebellum, thalamus, orbito-frontal cortex, and insula. No group differences were found in DC.Conclusions: Findings support the existence of a phenotypical association between group-level differences and inter-individual heterogeneity of functional deficits in SCZ. Given that only the joint structural/functional analysis revealed this association, structural-functional covariation may be a potentially relevant schizophrenia phenotype.File | Dimensione | Formato | |
---|---|---|---|
Antonucci_Joint-structural-functional-magnetic-resonance_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.