c-MET/hepatocyte growth factor (HGF) system deregulation is a well-known feature of malignancy in several solid tumors, and for this reason this system and its pathway have been considered as potential targets for therapeutic purposes. In previous manuscripts we reported c-MET/HGF expression and the role in testicular germ cell tumors (TGCTs) derived cell lines. We demonstrated the key role of c-Src and phosphatidylinositol 3-kinase (PI3K)/AKT adaptors in the HGF-dependent malignant behavior of the embryonal carcinoma cell line NT2D1, finding that the inhibition of these onco-adaptor proteins abrogates HGF triggered responses such as proliferation, migration, and invasion. Expanding on these previous studies, herein we investigated the role of mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) pathways in the HGF-dependent and HGF-independent NT2D1 cells biological responses. To inhibit MAPK/ERK pathways we chose a pharmacological approach, by using U0126 inhibitor, and we analyzed cell proliferation, collective migration, and chemotaxis. The administration of U0126 together with HGF reverts the HGF-dependent activation of cell proliferation but, surprisingly, does not exert the same effect on NT2D1 cell migration. In addition, we found that the use of U0126 alone significantly promotes the acquisition of NT2D1 «migrating phenotype», while collective migration of NT2D1 cells was stimulated. Notably, the inhibition of ERK activation in the absence of HGF stimulation resulted in the activation of the AKT-mediated pathway, and this let us speculate that the paradoxical effects obtained by using U0126, which are the increase of collective migration and the acquisition of partial epithelium-mesenchyme transition (pEMT), are the result of compensatory pathways activation. These data highlight how the specific response to pathway inhibitors, should be investigated in depth before setting up therapy.

ERK signaling pathway is constitutively active in NT2D1 non-seminoma cells and its inhibition impairs basal and HGF-activated cell proliferation / Gesualdi, Luisa; Berardini, Marika; Maria Scicchitano, Bianca; Castaldo, Clotilde; Bizzarri, Mariano; Filippini, Antonio; Riccioli, Anna; Schiraldi, Chiara; Ferranti, Francesca; Liguoro, Domenico; Mancini, Rita; Ricci, Giulia; Catizone, Angela. - In: BIOMEDICINES. - ISSN 2227-9059. - 11:7(2023), pp. 1-24. [10.3390/biomedicines11071894]

ERK signaling pathway is constitutively active in NT2D1 non-seminoma cells and its inhibition impairs basal and HGF-activated cell proliferation

Luisa Gesualdi;Marika Berardini;Clotilde Castaldo;Mariano Bizzarri;antonio filippini;Anna Riccioli;Domenico Liguoro;angela catizone
2023

Abstract

c-MET/hepatocyte growth factor (HGF) system deregulation is a well-known feature of malignancy in several solid tumors, and for this reason this system and its pathway have been considered as potential targets for therapeutic purposes. In previous manuscripts we reported c-MET/HGF expression and the role in testicular germ cell tumors (TGCTs) derived cell lines. We demonstrated the key role of c-Src and phosphatidylinositol 3-kinase (PI3K)/AKT adaptors in the HGF-dependent malignant behavior of the embryonal carcinoma cell line NT2D1, finding that the inhibition of these onco-adaptor proteins abrogates HGF triggered responses such as proliferation, migration, and invasion. Expanding on these previous studies, herein we investigated the role of mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) pathways in the HGF-dependent and HGF-independent NT2D1 cells biological responses. To inhibit MAPK/ERK pathways we chose a pharmacological approach, by using U0126 inhibitor, and we analyzed cell proliferation, collective migration, and chemotaxis. The administration of U0126 together with HGF reverts the HGF-dependent activation of cell proliferation but, surprisingly, does not exert the same effect on NT2D1 cell migration. In addition, we found that the use of U0126 alone significantly promotes the acquisition of NT2D1 «migrating phenotype», while collective migration of NT2D1 cells was stimulated. Notably, the inhibition of ERK activation in the absence of HGF stimulation resulted in the activation of the AKT-mediated pathway, and this let us speculate that the paradoxical effects obtained by using U0126, which are the increase of collective migration and the acquisition of partial epithelium-mesenchyme transition (pEMT), are the result of compensatory pathways activation. These data highlight how the specific response to pathway inhibitors, should be investigated in depth before setting up therapy.
2023
MAPK/ERK pathway; c-Met/HGF system; testicular germ cell tumors; tumor microenvironment
01 Pubblicazione su rivista::01a Articolo in rivista
ERK signaling pathway is constitutively active in NT2D1 non-seminoma cells and its inhibition impairs basal and HGF-activated cell proliferation / Gesualdi, Luisa; Berardini, Marika; Maria Scicchitano, Bianca; Castaldo, Clotilde; Bizzarri, Mariano; Filippini, Antonio; Riccioli, Anna; Schiraldi, Chiara; Ferranti, Francesca; Liguoro, Domenico; Mancini, Rita; Ricci, Giulia; Catizone, Angela. - In: BIOMEDICINES. - ISSN 2227-9059. - 11:7(2023), pp. 1-24. [10.3390/biomedicines11071894]
File allegati a questo prodotto
File Dimensione Formato  
Gesualdi_ERK-signaling_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1686679
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact