This work presents an application to drone technology based on an algorithm which combines a convolutional neural network (CNN) and a symbolic data analysis (SDA) process to detect anti-personnel mines from GPR data acquisitions. The CNN is aimed at automatically detecting buried objects; the SDA reduces the probability of objects identified as mines, even though they are not.

Mine clearance through an artificial intelligence flying drone / Mezzani, Federica; Pepe, Gianluca; Roveri, Nicola; Carcaterra, Antonio. - (2022), pp. 417-426. (Intervento presentato al convegno Proceedings of the Second International Nonlinear Dynamics Conference (NODYCON 2021) tenutosi a Rome, Italy) [10.1007/978-3-030-81166-2_37].

Mine clearance through an artificial intelligence flying drone

Federica Mezzani
;
Gianluca Pepe;Nicola Roveri;Antonio Carcaterra
2022

Abstract

This work presents an application to drone technology based on an algorithm which combines a convolutional neural network (CNN) and a symbolic data analysis (SDA) process to detect anti-personnel mines from GPR data acquisitions. The CNN is aimed at automatically detecting buried objects; the SDA reduces the probability of objects identified as mines, even though they are not.
2022
Proceedings of the Second International Nonlinear Dynamics Conference (NODYCON 2021)
mine clearance, artificial intelligence, flying drone
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Mine clearance through an artificial intelligence flying drone / Mezzani, Federica; Pepe, Gianluca; Roveri, Nicola; Carcaterra, Antonio. - (2022), pp. 417-426. (Intervento presentato al convegno Proceedings of the Second International Nonlinear Dynamics Conference (NODYCON 2021) tenutosi a Rome, Italy) [10.1007/978-3-030-81166-2_37].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1686554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact