The aim of this paper is to optimize the shape of a highly conductive interface in order to drain the maximum amount of heat. Given the ubiquity of irregular interfaces in heat transmission processes, we model such interfaces by Koch-mixture fractal layers. We propose a dynamics that iteratively refines these mixtures in order to maximize the temperature reduction in the bulk. We obtain that asymmetric Koch-mixtures drain heat effectively when properly refined. In addition, we show that the conductivity of the interface plays a significant role in the refinement of the optimal shape.

Fractal mixtures for optimal heat draining / Cefalo, M.; Creo, S.; Lancia, M. R.; Rodriguez-Cuadrado, J.. - In: CHAOS, SOLITONS AND FRACTALS. - ISSN 0960-0779. - 173:(2023), pp. 1-11. [10.1016/j.chaos.2023.113750]

Fractal mixtures for optimal heat draining

Cefalo M.;Creo S.;Lancia M. R.;
2023

Abstract

The aim of this paper is to optimize the shape of a highly conductive interface in order to drain the maximum amount of heat. Given the ubiquity of irregular interfaces in heat transmission processes, we model such interfaces by Koch-mixture fractal layers. We propose a dynamics that iteratively refines these mixtures in order to maximize the temperature reduction in the bulk. We obtain that asymmetric Koch-mixtures drain heat effectively when properly refined. In addition, we show that the conductivity of the interface plays a significant role in the refinement of the optimal shape.
2023
asymmetric fractal mixtures; optimal shape; heat flow; highly conductive layers
01 Pubblicazione su rivista::01a Articolo in rivista
Fractal mixtures for optimal heat draining / Cefalo, M.; Creo, S.; Lancia, M. R.; Rodriguez-Cuadrado, J.. - In: CHAOS, SOLITONS AND FRACTALS. - ISSN 0960-0779. - 173:(2023), pp. 1-11. [10.1016/j.chaos.2023.113750]
File allegati a questo prodotto
File Dimensione Formato  
Cefalo_Fractal mixtures_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1685506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact