This is a demonstration of our newly released Python package NL2LTL which leverages the latest in natural language understanding (NLU) and large language models (LLMs) to translate natural language instructions to linear temporal logic (LTL) formulas. This allows direct translation to formal languages that a reasoning system can use, while at the same time, allowing the end-user to provide inputs in natural language without having to understand any details of an underlying formal language. The package comes with support for a set of default LTL patterns, corresponding to popular DECLARE templates, but is also fully extensible to new formulas and user inputs. The package is open-source and is free to use for the AI community under the MIT license.

NL2LTL – a Python Package for Converting Natural Language (NL) Instructions to Linear Temporal Logic (LTL) Formulas / Fuggitti, Francesco; Chakraborti, Tathagata. - 37:13(2023), pp. 16428-16430. ( 37th AAAI Conference on Artificial Intelligence, AAAI 2023 Washington, DC, USA ) [10.1609/aaai.v37i13.27068].

NL2LTL – a Python Package for Converting Natural Language (NL) Instructions to Linear Temporal Logic (LTL) Formulas

Fuggitti, Francesco
Primo
;
2023

Abstract

This is a demonstration of our newly released Python package NL2LTL which leverages the latest in natural language understanding (NLU) and large language models (LLMs) to translate natural language instructions to linear temporal logic (LTL) formulas. This allows direct translation to formal languages that a reasoning system can use, while at the same time, allowing the end-user to provide inputs in natural language without having to understand any details of an underlying formal language. The package comes with support for a set of default LTL patterns, corresponding to popular DECLARE templates, but is also fully extensible to new formulas and user inputs. The package is open-source and is free to use for the AI community under the MIT license.
2023
37th AAAI Conference on Artificial Intelligence, AAAI 2023
natural language; linear temporal logic; natural language understanding
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
NL2LTL – a Python Package for Converting Natural Language (NL) Instructions to Linear Temporal Logic (LTL) Formulas / Fuggitti, Francesco; Chakraborti, Tathagata. - 37:13(2023), pp. 16428-16430. ( 37th AAAI Conference on Artificial Intelligence, AAAI 2023 Washington, DC, USA ) [10.1609/aaai.v37i13.27068].
File allegati a questo prodotto
File Dimensione Formato  
Fuggiti_NL2LTL_2023.pdf

accesso aperto

Note: https://ojs.aaai.org/index.php/AAAI/article/download/27068/26840
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 223.03 kB
Formato Adobe PDF
223.03 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1685194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? ND
social impact