In this study, we consider fractional-in-time Venttsel’ problems in fractal domains of the Koch type. Well-posedness and regularity results are given. In view of numerical approximation, we consider the associated approximating pre-fractal problems. Our main result is the convergence of the solutions of such problems towards the solution of the fractional-in-time Venttsel’ problem in the corresponding fractal domain. This is achieved via the convergence (in the Mosco–Kuwae–Shioya sense) of the approximating energy forms in varying Hilbert spaces.

Asymptotics for time-fractional Venttsel’ problems in fractal domains / Capitanelli, Raffaela; Creo, Simone; Lancia, Maria Rosaria. - In: FRACTAL AND FRACTIONAL. - ISSN 2504-3110. - 7:6(2023). [10.3390/fractalfract7060479]

Asymptotics for time-fractional Venttsel’ problems in fractal domains

Raffaela Capitanelli;Simone Creo;Maria Rosaria Lancia
2023

Abstract

In this study, we consider fractional-in-time Venttsel’ problems in fractal domains of the Koch type. Well-posedness and regularity results are given. In view of numerical approximation, we consider the associated approximating pre-fractal problems. Our main result is the convergence of the solutions of such problems towards the solution of the fractional-in-time Venttsel’ problem in the corresponding fractal domain. This is achieved via the convergence (in the Mosco–Kuwae–Shioya sense) of the approximating energy forms in varying Hilbert spaces.
2023
fractional Caputo time derivative; Venttsel’ problems; fractal domains; asymptotic behavior; varying Hilbert spaces; resolvent families
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotics for time-fractional Venttsel’ problems in fractal domains / Capitanelli, Raffaela; Creo, Simone; Lancia, Maria Rosaria. - In: FRACTAL AND FRACTIONAL. - ISSN 2504-3110. - 7:6(2023). [10.3390/fractalfract7060479]
File allegati a questo prodotto
File Dimensione Formato  
Capitanelli_Asymptotics_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 358.86 kB
Formato Adobe PDF
358.86 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1685142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact