Acoustic underwater channels are very challenging, because of limited bandwidth, long propagation delays, extended multipath, severe attenuation, rapid time variation and large Doppler shifts. A plethora of underwater communication techniques have been developed for dealing with such a complexity, mostly tailoring specific applications scenarios which can not be considered as one-size-fits-all solutions. Indeed, the design of environment-specific solutions is especially critical for modulations with high spectral efficiency, which are very sensitive to channel characteristics. In this paper, we design and implement a software-defined modem able to dynamically estimate the acoustic channel conditions, tune the parameters of a OFDM modulator as a function of the environment, or switch to a more robust JANUS/FSK modulator in case of harsh propagation conditions. The temporal variability of the channel behavior is summarized in terms of maximum delay spread and Doppler spread. We present a very efficient solution for deriving these parameters and discuss the limit conditions under which the OFDM modulator can work. In such scenarios, we also calibrate the prefix length and the number of sub-carriers for limiting the inter-symbol interference and signal distortions due to the Doppler effect. We validate our estimation and adaptation techniques by using both a custom-made simulator for time-varying underwater channels and the well-known Watermark simulator, as well as real in field experiments. Our results show that, for many practical cases, a dynamic adjustment of the prefix length and number of sub-carriers may enable the utilization of OFDM modulations in underwater communications, while in harsher environments JANUS can be used as a fall-back modulation.

A channel aware adaptive modem for underwater acoustic communications / Mangione, S; Galioto, Ge; Croce, D; Tinnirello, I; Petrioli, C. - In: IEEE ACCESS. - ISSN 2169-3536. - 9:(2021), pp. 76340-76353. [10.1109/ACCESS.2021.3082766]

A channel aware adaptive modem for underwater acoustic communications

Galioto, GE;Tinnirello, I;Petrioli, C
2021

Abstract

Acoustic underwater channels are very challenging, because of limited bandwidth, long propagation delays, extended multipath, severe attenuation, rapid time variation and large Doppler shifts. A plethora of underwater communication techniques have been developed for dealing with such a complexity, mostly tailoring specific applications scenarios which can not be considered as one-size-fits-all solutions. Indeed, the design of environment-specific solutions is especially critical for modulations with high spectral efficiency, which are very sensitive to channel characteristics. In this paper, we design and implement a software-defined modem able to dynamically estimate the acoustic channel conditions, tune the parameters of a OFDM modulator as a function of the environment, or switch to a more robust JANUS/FSK modulator in case of harsh propagation conditions. The temporal variability of the channel behavior is summarized in terms of maximum delay spread and Doppler spread. We present a very efficient solution for deriving these parameters and discuss the limit conditions under which the OFDM modulator can work. In such scenarios, we also calibrate the prefix length and the number of sub-carriers for limiting the inter-symbol interference and signal distortions due to the Doppler effect. We validate our estimation and adaptation techniques by using both a custom-made simulator for time-varying underwater channels and the well-known Watermark simulator, as well as real in field experiments. Our results show that, for many practical cases, a dynamic adjustment of the prefix length and number of sub-carriers may enable the utilization of OFDM modulations in underwater communications, while in harsher environments JANUS can be used as a fall-back modulation.
2021
OFDM; modulation; modems; channel estimation; receivers; bandwidth; hardware; channel estimation; JANUS; modems; OFDM; software radio; underwater communication; watermark
01 Pubblicazione su rivista::01a Articolo in rivista
A channel aware adaptive modem for underwater acoustic communications / Mangione, S; Galioto, Ge; Croce, D; Tinnirello, I; Petrioli, C. - In: IEEE ACCESS. - ISSN 2169-3536. - 9:(2021), pp. 76340-76353. [10.1109/ACCESS.2021.3082766]
File allegati a questo prodotto
File Dimensione Formato  
Mangione_A channel aware_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1684973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 11
social impact