Maximizing a monotone submodular function is a fundamental task in machine learning. In this paper we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank k of the matroid and the number d of deleted elements. In the centralized setting we present a (3.582 + O(ε))-approximation algorithm with summary size O(k + εd2 log kε ). In the streaming setting we provide a (5.582 + O(ε))approximation algorithm with summary size and memory O(k + εd2 log kε ). We complement our theoretical results with an in-depth experimental analysis showing the effectiveness of our algorithms on real-world datasets.

Deletion Robust Submodular Maximization over Matroids / Dutting, P.; Fusco, F.; Lattanzi, S.; Norouzi-Fard, A.; Zadimoghaddam, M.. - 162:(2022), pp. 5671-5693. (Intervento presentato al convegno International Conference on Machine Learning tenutosi a Baltimore; USA).

Deletion Robust Submodular Maximization over Matroids

Fusco F.
;
Lattanzi S.;
2022

Abstract

Maximizing a monotone submodular function is a fundamental task in machine learning. In this paper we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank k of the matroid and the number d of deleted elements. In the centralized setting we present a (3.582 + O(ε))-approximation algorithm with summary size O(k + εd2 log kε ). In the streaming setting we provide a (5.582 + O(ε))approximation algorithm with summary size and memory O(k + εd2 log kε ). We complement our theoretical results with an in-depth experimental analysis showing the effectiveness of our algorithms on real-world datasets.
2022
International Conference on Machine Learning
submodular maximization; deletion robust
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Deletion Robust Submodular Maximization over Matroids / Dutting, P.; Fusco, F.; Lattanzi, S.; Norouzi-Fard, A.; Zadimoghaddam, M.. - 162:(2022), pp. 5671-5693. (Intervento presentato al convegno International Conference on Machine Learning tenutosi a Baltimore; USA).
File allegati a questo prodotto
File Dimensione Formato  
Dutting_preprint_Deletion_2022.pdf

accesso aperto

Note: https://proceedings.mlr.press/v162/duetting22a/duetting22a.pdf
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF
Dutting_Deletion_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1684844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 2
social impact