The framework of feedback graphs is a generalization of sequential decision-making with bandit or full information feedback. In this work, we study an extension where the directed feedback graph is stochastic, following a distribution similar to the classical Erdős-Rényi model. Specifically, in each round every edge in the graph is either realized or not with a distinct probability for each edge. We prove nearly optimal regret bounds of order (Equation presented) (ignoring logarithmic factors), where αε and δε are graph-theoretic quantities measured on the support of the stochastic feedback graph G with edge probabilities thresholded at ε. Our result, which holds without any preliminary knowledge about G, requires the learner to observe only the realized out-neighborhood of the chosen action. When the learner is allowed to observe the realization of the entire graph (but only the losses in the out-neighborhood of the chosen action), we derive a more efficient algorithm featuring a dependence on weighted versions of the independence and weak domination numbers that exhibits improved bounds for some special cases.

Learning on the Edge: Online Learning with Stochastic Feedback Graphs / Esposito, E.; van der Hoeven, D.; Fusco, F.; Cesa-Bianchi, N.. - 35:(2022). (Intervento presentato al convegno Advances in Neural Information Processing Systems (was NIPS) tenutosi a New Orleans Convention Center, usa).

Learning on the Edge: Online Learning with Stochastic Feedback Graphs

Fusco F.;
2022

Abstract

The framework of feedback graphs is a generalization of sequential decision-making with bandit or full information feedback. In this work, we study an extension where the directed feedback graph is stochastic, following a distribution similar to the classical Erdős-Rényi model. Specifically, in each round every edge in the graph is either realized or not with a distinct probability for each edge. We prove nearly optimal regret bounds of order (Equation presented) (ignoring logarithmic factors), where αε and δε are graph-theoretic quantities measured on the support of the stochastic feedback graph G with edge probabilities thresholded at ε. Our result, which holds without any preliminary knowledge about G, requires the learner to observe only the realized out-neighborhood of the chosen action. When the learner is allowed to observe the realization of the entire graph (but only the losses in the out-neighborhood of the chosen action), we derive a more efficient algorithm featuring a dependence on weighted versions of the independence and weak domination numbers that exhibits improved bounds for some special cases.
2022
Advances in Neural Information Processing Systems (was NIPS)
feedback graph; online learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Learning on the Edge: Online Learning with Stochastic Feedback Graphs / Esposito, E.; van der Hoeven, D.; Fusco, F.; Cesa-Bianchi, N.. - 35:(2022). (Intervento presentato al convegno Advances in Neural Information Processing Systems (was NIPS) tenutosi a New Orleans Convention Center, usa).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1684842
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact