Today, there is an increasing use of airborne sensors in archaeology, especially to investigate the surface of more or less vast territories quickly and accurately. In particular, airborne laser scanning technologies from small remotely piloted aircraft are rapidly developing towards increasingly high-performance solutions for the investigation of archaeological evidence hidden by vegetation or more or less substantial soil deposits. The proposed contribution intends to insert itself within this field of archaeological research by presenting "UAVIMALS" (Unmanned Aerial Vehicle Integrated with Micro Airborne Laser Scanner), an aerial remote sensing system of "soil marks", designed for surface archaeological investigations and the result of an Early Career Grant from the National Geographic Society. The system, consisting of a customised drone based on an open architecture and software for vehicle control and data processing, integrates a solid-state laser sensor, commonly engineered for obstacle avoidance, but here exploited to process accurate DTM (Digital Terrain Model) of small land surfaces with a significant reduction in cost and acquisition time. The system, whose engineering was contributed by the BioRobotics Institute of the S. Anna University of Pisa, was tested within the archaeological context of Leopoli - Cencelle (Tarquinia, Italy). A mediaeval city that has been researched for about 25 years by the Chair of Christian and Medieval Archaeology at the 'Sapienza' University of Rome. Experimentation missions carried out on the site, which is still only partially investigated, have been successful in bringing to light some urban areas that had not yet been investigated.

UAVIMALS: the "open" remote sensing system for surface archaeological investigation / Vacatello, Federica.; Roccella, Stefano.; Vannini, Andrea.. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 2194-9034. - XLVIII-4/W7-2023:(2023), pp. 239-245. [10.5194/isprs-archives-XLVIII-4-W7-2023-239-2023]

UAVIMALS: the "open" remote sensing system for surface archaeological investigation

Vacatello, Federica.
Primo
;
2023

Abstract

Today, there is an increasing use of airborne sensors in archaeology, especially to investigate the surface of more or less vast territories quickly and accurately. In particular, airborne laser scanning technologies from small remotely piloted aircraft are rapidly developing towards increasingly high-performance solutions for the investigation of archaeological evidence hidden by vegetation or more or less substantial soil deposits. The proposed contribution intends to insert itself within this field of archaeological research by presenting "UAVIMALS" (Unmanned Aerial Vehicle Integrated with Micro Airborne Laser Scanner), an aerial remote sensing system of "soil marks", designed for surface archaeological investigations and the result of an Early Career Grant from the National Geographic Society. The system, consisting of a customised drone based on an open architecture and software for vehicle control and data processing, integrates a solid-state laser sensor, commonly engineered for obstacle avoidance, but here exploited to process accurate DTM (Digital Terrain Model) of small land surfaces with a significant reduction in cost and acquisition time. The system, whose engineering was contributed by the BioRobotics Institute of the S. Anna University of Pisa, was tested within the archaeological context of Leopoli - Cencelle (Tarquinia, Italy). A mediaeval city that has been researched for about 25 years by the Chair of Christian and Medieval Archaeology at the 'Sapienza' University of Rome. Experimentation missions carried out on the site, which is still only partially investigated, have been successful in bringing to light some urban areas that had not yet been investigated.
2023
Lidar; Remote Sensing; Archaeology; Landscape Archaeology; UAV
01 Pubblicazione su rivista::01a Articolo in rivista
UAVIMALS: the "open" remote sensing system for surface archaeological investigation / Vacatello, Federica.; Roccella, Stefano.; Vannini, Andrea.. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 2194-9034. - XLVIII-4/W7-2023:(2023), pp. 239-245. [10.5194/isprs-archives-XLVIII-4-W7-2023-239-2023]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1684501
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact