Context The risk stratification of patients with differentiated thyroid cancer (DTC) is crucial in clinical decision making. The most widely accepted method to assess risk of recurrent/persistent disease is described in the 2015 American Thyroid Association (ATA) guidelines. However, recent research has focused on the inclusion of novel features or questioned the relevance of currently included features. Objective To develop a comprehensive data-driven model to predict persistent/recurrent disease that can capture all available features and determine the weight of predictors. Methods In a prospective cohort study, using the Italian Thyroid Cancer Observatory (ITCO) database (NCT04031339), we selected consecutive cases with DTC and at least early follow-up data (n = 4773; median follow-up 26 months; interquartile range, 12-46 months) at 40 Italian clinical centers. A decision tree was built to assign a risk index to each patient. The model allowed us to investigate the impact of different variables in risk prediction. Results By ATA risk estimation, 2492 patients (52.2%) were classified as low, 1873 (39.2%) as intermediate, and 408 as high risk. The decision tree model outperformed the ATA risk stratification system: the sensitivity of high-risk classification for structural disease increased from 37% to 49%, and the negative predictive value for low-risk patients increased by 3%. Feature importance was estimated. Several variables not included in the ATA system significantly impacted the prediction of disease persistence/recurrence: age, body mass index, tumor size, sex, family history of thyroid cancer, surgical approach, presurgical cytology, and circumstances of the diagnosis. Conclusion Current risk stratification systems may be complemented by the inclusion of other variables in order to improve the prediction of treatment response. A complete dataset allows for more precise patient clustering.

A Data-Driven Approach to Refine Predictions of Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study / Grani, Giorgio; Gentili, Michele; Siciliano, Federico; Albano, Domenico; Zilioli, Valentina; Morelli, Silvia; Puxeddu, Efisio; Zatelli, MARIA CHIARA; Gagliardi, Irene; Piovesan, Alessandro; Nervo, Alice; Crocetti, Umberto; Massa, Michela; Teresa Samà, Maria; Mele, Chiara; Deandrea, Maurilio; Fugazzola, Laura; Puligheddu, Barbara; Antonelli, Alessandro; Rossetto, Ruth; D’Amore, Annamaria; Ceresini, Graziano; Castello, Roberto; Solaroli, Erica; Centanni, Marco; Monti, Salvatore; Magri, Flavia; Bruno, Rocco; Sparano, Clotilde; Pezzullo, Luciano; Crescenzi, Anna; Mian, Caterina; Tumino, Dario; Repaci, Andrea; Grazia Castagna, Maria; Triggiani, Vincenzo; Porcelli, Tommaso; Meringolo, Domenico; Locati, Laura; Spiazzi, Giovanna; Di Dalmazi, Giulia; Anagnostopoulos, Aris; Leonardi, Stefano; Filetti, Sebastiano; Durante, Cosimo. - In: THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM. - ISSN 0021-972X. - 108:8(2023), pp. 1921-1928. [10.1210/clinem/dgad075]

A Data-Driven Approach to Refine Predictions of Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study

Giorgio Grani;Michele Gentili;Federico Siciliano;Maria Chiara Zatelli;Marco Centanni;Anna Crescenzi;Aris Anagnostopoulos;Stefano Leonardi;Sebastiano Filetti;Cosimo Durante
2023

Abstract

Context The risk stratification of patients with differentiated thyroid cancer (DTC) is crucial in clinical decision making. The most widely accepted method to assess risk of recurrent/persistent disease is described in the 2015 American Thyroid Association (ATA) guidelines. However, recent research has focused on the inclusion of novel features or questioned the relevance of currently included features. Objective To develop a comprehensive data-driven model to predict persistent/recurrent disease that can capture all available features and determine the weight of predictors. Methods In a prospective cohort study, using the Italian Thyroid Cancer Observatory (ITCO) database (NCT04031339), we selected consecutive cases with DTC and at least early follow-up data (n = 4773; median follow-up 26 months; interquartile range, 12-46 months) at 40 Italian clinical centers. A decision tree was built to assign a risk index to each patient. The model allowed us to investigate the impact of different variables in risk prediction. Results By ATA risk estimation, 2492 patients (52.2%) were classified as low, 1873 (39.2%) as intermediate, and 408 as high risk. The decision tree model outperformed the ATA risk stratification system: the sensitivity of high-risk classification for structural disease increased from 37% to 49%, and the negative predictive value for low-risk patients increased by 3%. Feature importance was estimated. Several variables not included in the ATA system significantly impacted the prediction of disease persistence/recurrence: age, body mass index, tumor size, sex, family history of thyroid cancer, surgical approach, presurgical cytology, and circumstances of the diagnosis. Conclusion Current risk stratification systems may be complemented by the inclusion of other variables in order to improve the prediction of treatment response. A complete dataset allows for more precise patient clustering.
2023
clinical practice; differentiated thyroid cancer; evidence-based guidelines; risk stratification
01 Pubblicazione su rivista::01a Articolo in rivista
A Data-Driven Approach to Refine Predictions of Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study / Grani, Giorgio; Gentili, Michele; Siciliano, Federico; Albano, Domenico; Zilioli, Valentina; Morelli, Silvia; Puxeddu, Efisio; Zatelli, MARIA CHIARA; Gagliardi, Irene; Piovesan, Alessandro; Nervo, Alice; Crocetti, Umberto; Massa, Michela; Teresa Samà, Maria; Mele, Chiara; Deandrea, Maurilio; Fugazzola, Laura; Puligheddu, Barbara; Antonelli, Alessandro; Rossetto, Ruth; D’Amore, Annamaria; Ceresini, Graziano; Castello, Roberto; Solaroli, Erica; Centanni, Marco; Monti, Salvatore; Magri, Flavia; Bruno, Rocco; Sparano, Clotilde; Pezzullo, Luciano; Crescenzi, Anna; Mian, Caterina; Tumino, Dario; Repaci, Andrea; Grazia Castagna, Maria; Triggiani, Vincenzo; Porcelli, Tommaso; Meringolo, Domenico; Locati, Laura; Spiazzi, Giovanna; Di Dalmazi, Giulia; Anagnostopoulos, Aris; Leonardi, Stefano; Filetti, Sebastiano; Durante, Cosimo. - In: THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM. - ISSN 0021-972X. - 108:8(2023), pp. 1921-1928. [10.1210/clinem/dgad075]
File allegati a questo prodotto
File Dimensione Formato  
dgad075.pdf

solo gestori archivio

Note: Grani_A Data-Driven Approach_2023
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 496.11 kB
Formato Adobe PDF
496.11 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1684331
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 13
social impact