In the brittle regime, faults tend to be oriented along an angle of about 30 relative to the principal stress direction. This empirical Andersonian observation is usually explained by the orientation of the stress tensor and the slope of the yield envelope defined by the Mohr-Coulomb criterion, often called critical-stress theory, assuming frictional properties of the crustal rocks (friction coefficient = 0.6-0.8). However, why the slope has a given value? We suggest that the slope dip is constrained by the occurrence of the largest shear stress gradient along that inclination. High homogeneous shear stress, i.e., without gradients, may generate aseismic creep as for example in flat decollements, both along thrusts and low angle normal faults, whereas along ramps larger shear stress gradients determine greater energy accumulation and stick-slip behaviour with larger sudden seismic energy release. Further variability of the angle is due to variations of the internal friction and of the Poisson ratio, being related to different lithologies, anisotropies and pre-existing fractures and faults. Misaligned faults are justified to occur due to the local weaknesses in the crustal volume; however, having lower stress gradients along dip than the optimally-oriented ones, they have higher probability of being associated with lower seismogenic potential or even aseismic behavior.

Fault dip vs shear stress gradient / Zaccagnino, Davide; Doglioni, Carlo. - In: GEOSYSTEMS AND GEOENVIRONMENT. - ISSN 2772-8838. - 2:4(2023).

Fault dip vs shear stress gradient

Davide Zaccagnino
Primo
;
Carlo Doglioni
Ultimo
2023

Abstract

In the brittle regime, faults tend to be oriented along an angle of about 30 relative to the principal stress direction. This empirical Andersonian observation is usually explained by the orientation of the stress tensor and the slope of the yield envelope defined by the Mohr-Coulomb criterion, often called critical-stress theory, assuming frictional properties of the crustal rocks (friction coefficient = 0.6-0.8). However, why the slope has a given value? We suggest that the slope dip is constrained by the occurrence of the largest shear stress gradient along that inclination. High homogeneous shear stress, i.e., without gradients, may generate aseismic creep as for example in flat decollements, both along thrusts and low angle normal faults, whereas along ramps larger shear stress gradients determine greater energy accumulation and stick-slip behaviour with larger sudden seismic energy release. Further variability of the angle is due to variations of the internal friction and of the Poisson ratio, being related to different lithologies, anisotropies and pre-existing fractures and faults. Misaligned faults are justified to occur due to the local weaknesses in the crustal volume; however, having lower stress gradients along dip than the optimally-oriented ones, they have higher probability of being associated with lower seismogenic potential or even aseismic behavior.
2023
fault dip; tectonic settings; shear stress gradients
01 Pubblicazione su rivista::01a Articolo in rivista
Fault dip vs shear stress gradient / Zaccagnino, Davide; Doglioni, Carlo. - In: GEOSYSTEMS AND GEOENVIRONMENT. - ISSN 2772-8838. - 2:4(2023).
File allegati a questo prodotto
File Dimensione Formato  
Zaccagnino_Fault_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1684059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact